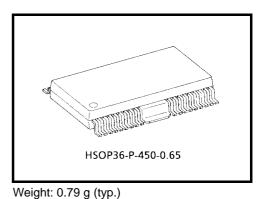
TOSHIBA BiCD Process Integrated Circuit Silicon Monolithic


TB62205F

Single-Stepping Motor Driver IC with Dual DC/DC Converter Driven by Chopper Micro-Step Pseudo Sine Wave

The TB62205F is a single-stepping motor driver with dual DCDC converter driven by chopper micro-step pseudo sine wave.

To drive a two-phase bipolar-type stepping motor, a 16-bit latch and a 16-bit shift register are built in the IC. The TB62205F is suitable for driving stepping motors at high efficiency and with low-torque ripple, and supports Selectable Mixed Decay Mode for switching the attenuation ratio at chopping.

Also, the IC incorporates two DCDC converters, enabling two individually configurable power supplies.

Features

- One stepping motor driven by micro-step pseudo sine wave is controlled by a single driver IC
- Enables to drive two-way supply voltage using a pair of step-down DC/DC converters
- Monolithic Bi-CMOS IC

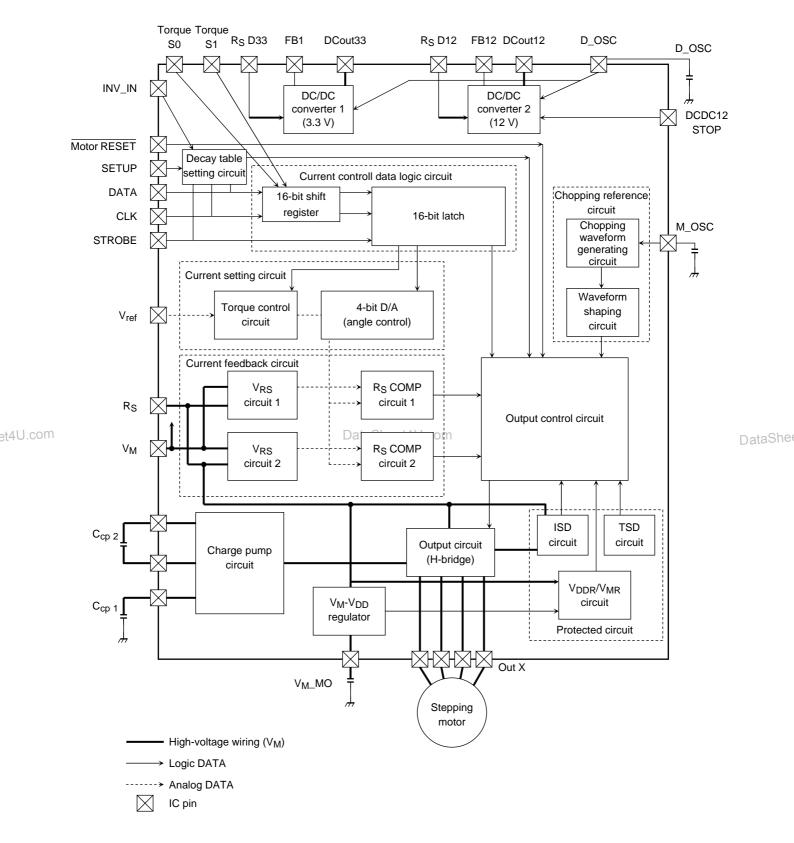
Low ON-resistance of R_{on} = 0.7 Ω (@Tj = 25°C, 1.0 A: typ.)

- Motor block incorporating 16-bit serial-in shift register, 16-bit latch and 4-bit D/A converter for micro step drives
- On-chip 5-V regulator for internal circuit, enabling single power supply operation (VM) for the motor
- On-chip ISD and TSD circuits, and internal VDD/VM power-on reset circuit as protection circuits
- On-chip charge pump circuit (two external capacitors)
- Package: 36-pin power flat package (P-HSOP 3620-450-0.65)
- Motor maximum power supply voltage: 30 V (max), motor output current: 0.7 A (max)
- DCDC converter maximum input current: 1.2 A (max), maximum load current: 0.96 (A)
- On-chip Mixed Decay Mode enables specification of four-stage attenuation ratio.
- Chopping frequency can be set by external oscillator. High-speed chopping is possible at 100 kHz or higher.
- Also, DCDC frequency can be set by the external OSC.
- To set chopping at 100 kHz or higher is possible

Note: When using the IC, pay attention to thermal conditions. These devices are easily damaged by high static voltage. In regards to this, please handle with care.

A schottky barrier diode (SBD) should be inserted between the output pin of the DCDC converter and ground. (Recommended device: Toshiba CMS07)

DataSheet4U.com

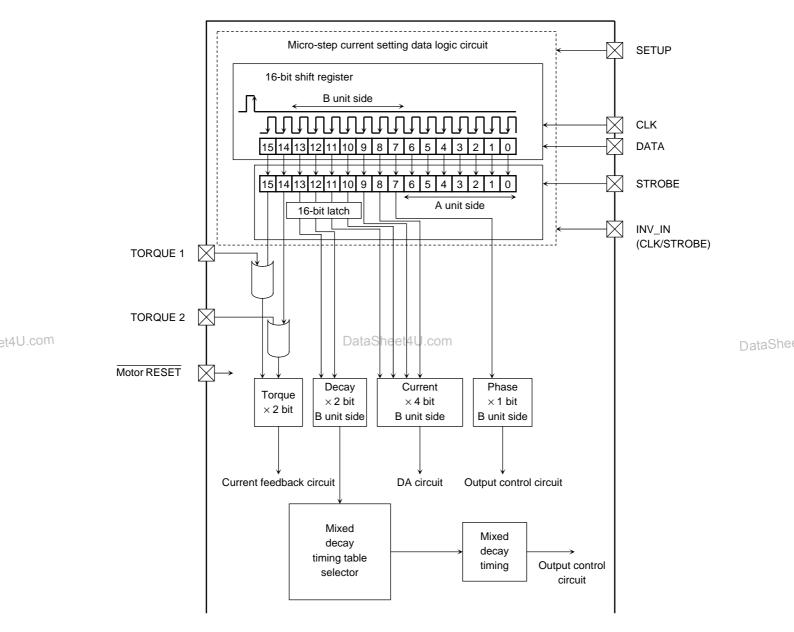

www.DataSheet4U.com

DataShe

Block Diagram

TB62205F

1. Overview


DataSheet4U.com

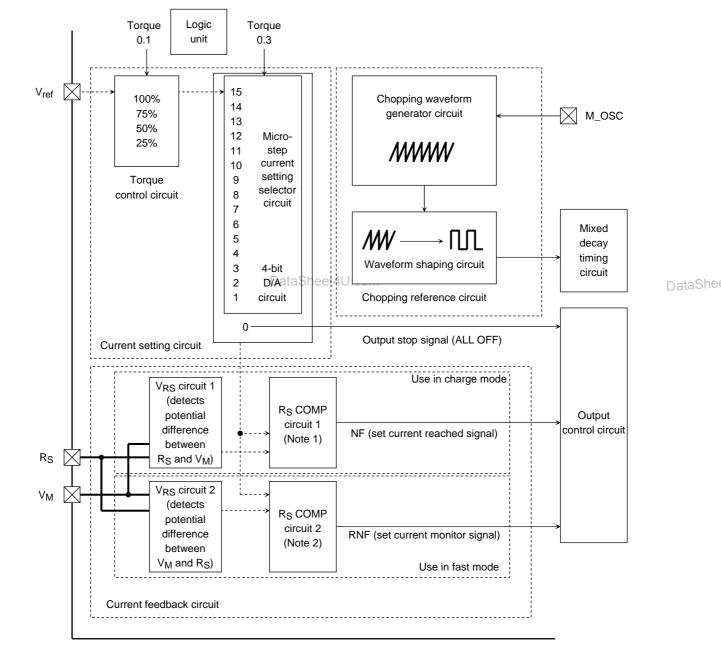
2. Logic unit for motor driver

Function

This circuit is used to input from the DATA pins micro-step current setting data and to transfer them to the subsequent stage. By switching the SETUP pin, the data in the mixed decay timing table can be rewrite

External input data and the 2-bit input signal from 16-bit shift register can be used to set the torque circuit. When 1 is input to one of them, 1 is reflected such as a function of OR gate.

Note: The Motor RESET and SETUP pins are pulled down in the IC by 100 kΩ resistor. When the SETUP pin and the TORQUE pin are not used, connect them to ground. Otherwise, malfunction may occur.

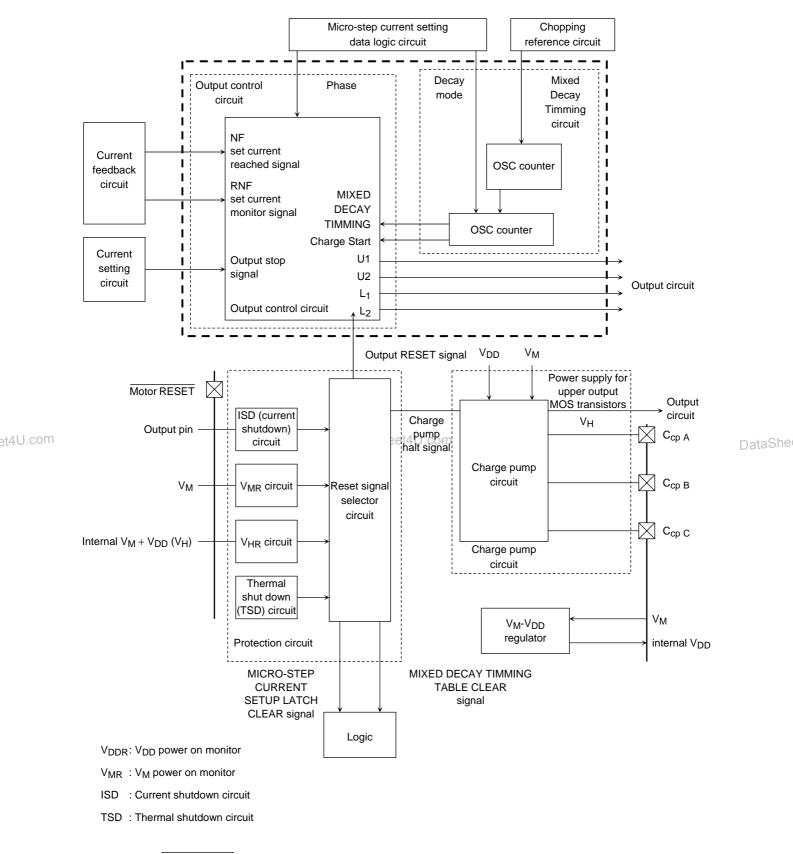

3. Current feedback circuit and current setting circuit for motor driver

Function

The current setting circuit is used to set the reference voltage of the output current using the micro-step current setting data input from the DATA pins.

The current feedback circuit is used to output to the output control circuit the relation between the set current value and output current. This is done by comparing the reference voltage output to the current setting circuit with the potential difference generated when current flows through the current sense resistor connected between R_S and V_M .

The chopping waveform generator, to which a capacitor is connected, generates clock (OSC-CLK) used as reference for the chopping frequency, so that these two circuits are pure digital logic.

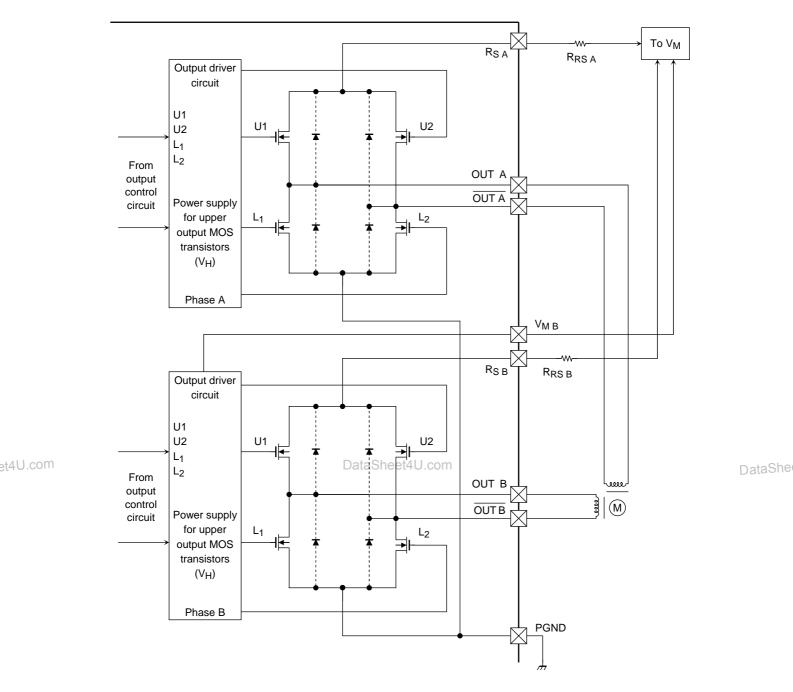

Note 1: R_S COMP1: Compares the set current with the output current and outputs a signal when the output current reaches the set current.

Note 2: R_S COMP2: Compares the set current with the output current at the end of Fast mode during chopping. Outputs a signal when the set current is below the output current.

DataSheet4U.com

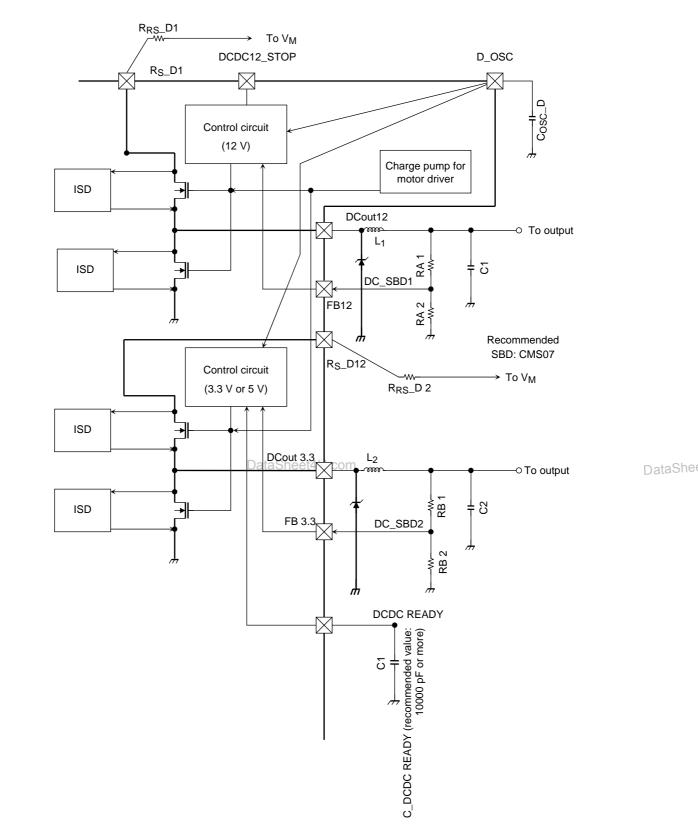
et4U.com

4. Output control circuit, current feedback circuit and current setting circuit for motor driver



Note: The Motor RESET, and SETUP pins are pulled down in the IC by a 100-k Ω resistor. When these pins are not used, connect them to ground. If they are left open, malfunction may occur.

DataSheet4U.com


www.DataSheet4U.com

5. Output equivalent circuit for motor driver

www.DataSheet4U.com

6. DCDC conversion circuit

et4U.com

www.DataSheet4U.com

DataSheet4U.com

Pin Descriptions

I V _M Power supply monitor pin for output part 2 TORQUE S0 External motor torque setting pin for motor 3 TORQUE S1 External motor torque setting pin for motor 4 INV_IN Inverse input pin for motor CLK and STROBE 5 VSS1 Ground pin for LOGIC part (Please connect the pin 5 to F _{IN}) 6 NC Not connected 7 OUTĀ Motor Å output pin 8 RS A Motor Å output pin 9 OUTA Motor Å output pin 11 RS B Motor Å output pin 12 OUT B Motor B output pin 13 NC Not connected 14 VSS2 Ground pin for LOGIC part (Please connect the pin 14 to FIN.) 15 STROBE Motor STROBE (Litch) signal input pin (J: LATCH @ INV_IN: L) 16 CLK Motor ox serial data signal input pin 18 OSC_M External chooping reference pin for motor, that sets the chooping reference pin for motor, that sets the chooping reference pin for Motor SETUP (L: Motor operation, H: Motor switching) 20 Vref Motor Stoping pin for Motor	Pin No.	Pin Symbol	Pin Description
3 TORQUE S1 External motor torque setting plin for motor 4 INV_IN Inverse input plin for motor CLK and STROBE 5 V _{SS1} Ground plin for LOGIC part (Please connect the pin 5 to F _{IN-}) 6 NC Not connected 7 OUT Ā Motor Å channel current detection pin (power supply pin) 9 OUT A Motor A output pin Fin Fin Fin Yes Motor Å output pin 11 Rs B Motor B output pin 12 OUT B Motor B output pin 13 NC Not connected 14 V _{SS2} Ground pin for LOGIC part (Please connect the pin 14 to F _{IN-}) 15 STROBE Motor StROBE (latch) signal input pin (J: LATCH @ INV_IN: L) 16 CLK Motor ork input pin (Te CLK @ INV_IN: L) 17 DATA Motor StraDBE (not ork Signal input pin Gin Gin gic part (Internal power supply) 20 V _{DD} _MO Internal power supply finionitior pin for Motor StraDP (L: Motor operation, H: Motor switching) 21 SETUP Motor Stopping pin for Motor SETUP (L: Motor operation, H: Motor switching)	1	V _M	Power supply monitor pin for output part
4 INV_IN Inverse input pin for motor CLK and STROBE 5 V _{SS1} Ground pin for LOGIC part (Please connect the pin 5 to FIN.) 6 NC Not connected 7 OUT Ā Motor Ā output pin 8 R _S A Motor A channel current detection pin (power supply pin) 9 OUT A Motor Å output pin FIN FIN FIN (VSS): Ground pin for LOGIC 11 R _S B Motor B comput pin 12 OUT B Motor B output pin 13 NC Not connected 14 V _{SS2} Ground pin for LOGIC part (Please connect the pin 14 to FIN.) 15 STROBE Motor STROBE (latch) signal input pin (J: LATCH @ INV_IN: L) 16 CLK Motor serial data signal input pin 17 DATA Motor serial data signal input pin 18 OSC_M External chooping reference pin for motor, that sets the chooping frequency. 19 V _{DD_MO} Internal power supply motor SUPID for DCDC 12 V 20 Vref Motor Stopping pin for DCDC 12 V 21 SETUP Motor stopping pin for DCDC 12 V 22 Motor RESE	2	TORQUE S0	External motor torque setting pin for motor
5 V _{SS1} Ground pin for LOGIC part (Please connect the pin 5 to F _{IN} .) 6 NC Not connected 7 OUT Ā Motor Ā output pin 8 R _S A Motor A channel current detection pin (power supply pin) 9 OUT A Motor A output pin FiN FiN FiN (V _{SS}): Ground pin for LOGIC 10 OUT B Motor B output pin 11 R _S B Motor B output pin 12 OUT B Motor B output pin 13 NC Not connected 14 V _{SS2} Ground pin for LOGIC part (Please connect the pin 14 to F _{IN} .) 15 STROBE Motor STROBE (latch) signal input pin (J: LATCH @ INV_IN: L) 16 CLK Motor Sorpia reference pin for motor, that sets the chopping frequency. 19 V _{DD} _MO Internal power supply mont for DCDC 12 V 20 Vref Motor storping pin for DCDC 12 V 21 SETUP Mode switching pin for DCDC 12 V 22 Motor RESET Mode supping pin for DCDC 12 V 23 DCDC125TOP Output stopping pin f	3	TORQUE S1	External motor torque setting pin for motor
6 Not Not connected 7 OUT Ā Motor Ā output pin 8 R _{S A} Motor A channel current detection pin (power supply pin) 9 OUT A Motor A output pin FiN FiN FiN FiN (VSS): Ground pin for LOGIC 10 OUT B Motor B output pin 11 R _{S B} Motor B output pin 12 OUT B Motor B output pin 13 NC Not connected 14 VSS2 Ground pin for LOGIC part (Please connect the pin 14 to FiN-) 15 STROBE Motor StROBE (latch) signal input pin (J: LATCH @ INV_IN: L) 16 CLK Motor straid data signal input pin 17 DATA Motor serial data signal input pin 18 OSC_M External chopping reference pin for motor, that sets the chopping frequency. 19 VpD_D_MO Internal power supply motion for IoGic part (Internal power supply) 20 Vref Motor stopping pin (L: RESET) 23 DCDC12STOP Output stopping pin for DCDC 12 V 24 DCDC12FB Vol	4	INV_IN	Inverse input pin for motor CLK and STROBE
7 OUTĀ Motor Ā output pin 8 $R_{S,A}$ Motor A channel current detection pin (power supply pin) 9 OUT A Motor A output pin FiN F_{IN} F_{IN} (VSS): Ground pin for LOGIC 10 OUT B Motor B output pin 11 $R_S B$ Motor B output pin 12 OUT B Motor B output pin 13 NC Not connected 14 V_{SS2} Ground pin for LOGIC part (Please connect the pin 14 to F _{IN}) 15 STROBE Motor STROBE (latch) signal input pin (J: LATCH @ INV_IN: L) 16 CLK Motor Stradat as aignal input pin 17 DATA Motor serial data signal input pin 18 OSC_M External chopping reference pin for motor, that sets the chopping frequency. 19 Vp_D_MO Internal power supply monitor pin for logic part (Internal power supply) 20 V_{ref} Motor stopping pin for DCDC 12 V 21 SETUP Motor stopping pin for DCDC 12 V 23 DCDC12STOP Output stopping pin for DCDC 12 V 24 DCDC12FB Voltage feedback pin for DCDC 12 V	5	V _{SS1}	Ground pin for LOGIC part (Please connect the pin 5 to FIN.)
8 R _{S A} Motor A channel current detection pin (power supply pin) 9 OUT A Motor A output pin FiN FiN FiN FiN Vission and the pin of LOGIC 10 OUT B Motor B output pin Motor B Output pin 11 R _{S B} Motor B channel current detection pin (power supply pin) 12 OUT B Motor B output pin 13 NC Not connected 14 Vss2 Ground pin for LOGIC part (Please connect the pin 14 to FIN.) 15 STROBE Motor STROBE (latch) signal input pin (J: LATCH @ INV_IN: L) 16 CLK Motor lock input pin (1: CLK @ INV_IN: L) 17 DATA Motor serial data signal input pin 18 OSC_M External chopping reference pin for motor, that sets the chopping frequency. 19 Vp_D_MO Internal power supply in for IAtor SETUP (L: Motor operation, H: Motor switching) 21 SETUP Mode switching pin for DCDC 12 V 23 DCDC12STOP Output stopping pin (L: RESET) 24 DCDC12FB Voltage feedback pin for DCDC 12 V	6	NC	Not connected
9 OUT A Motor A output pin FIN FIN FIN FIN (VSS): Ground pin for LOGIC 10 OUT B Motor B output pin 11 RS B Motor B output pin 12 OUT B Motor B output pin 13 NC Not connected 14 VSS2 Ground pin for LOGIC part (Please connect the pin 14 to FIN-) 15 STROBE Motor StROBE (latch) signal input pin (J: LATCH @ INV_IN: L) 16 CLK Motor oscillata at signal input pin (J: LATCH @ INV_IN: L) 17 DATA Motor serial data signal input pin 18 OSC_M External chopping reference pin for motor, that sets the chopping frequency. 19 VDD_MO Internal power supply not for Motor SETUP (L: Motor operation, H: Motor switching) 20 Vref Motor stopping pin for DCDC 12 V 21 SETUP Mode switching pin for DCDC 12 V 22 Motor RESET Motor stopping pin for DCDC 12 V 23 DCDC12FB Voltage feedback pin for DCDC 12 V 24 DCDC12FB Voltage output pin for DCDC 12 V 25 P-GND12 PGND for DCDC 12 V	7		Motor A output pin
FIN FIN FIN (VSS): Ground pin for LOGIC 10 OUT B Motor B output pin 11 RS B Motor B channel current detection pin (power supply pin) 12 OUT B Motor B output pin 13 NC Not connected 14 VSS2 Ground pin for LOGIC part (Please connect the pin 14 to FIN.) 15 STROBE Motor STROBE (latch) signal input pin (J: LATCH @ INV_IN: L) 16 CLK Motor ock input pin (Î: CLK @ INV_IN: L) 17 DATA Motor serial data signal input pin 18 OSC_M External chopping reference pin for motor, that sets the chopping frequency. 19 VDD_MO Internal power supply motor SETUP (L: Motor operation, H: Motor switching) 21 SETUP Motor stopping pin for Motor SETUP (L: Motor operation, H: Motor switching) 22 Motor RESET Motor stopping pin for DCDC 12 V 24 DCDC12FB Voltage feedback pin for DCDC 12 V 25 P-GND12 PGND for DCDC 12 V 26 Rs_DC12 Power voltage output pin for DCDC 12 V 27 DCDC12OUT Power voltag	8	R _{S A}	Motor A channel current detection pin (power supply pin)
10 OUT B Motor B output pin 11 RS B Motor B channel current detection pin (power supply pin) 12 OUT B Motor B output pin 13 NC Not connected 14 VSS2 Ground pin for LOGIC part (Please connect the pin 14 to FIN.) 15 STROBE Motor STROBE (latch) signal input pin (J: LATCH @ INV_IN: L) 16 CLK Motor lock input pin (Î: CLK @ INV_IN: L) 17 DATA Motor serial data signal input pin 18 OSC_M External chopping reference pin for motor, that sets the chopping frequency. 19 VpD_MO Internal power supply finition for logic part (Internal power supply) 20 Vref Motor Vref input pin 21 SETUP Motor stopping pin for Motor SETUP (L: Motor operation, H: Motor switching) 22 Motor RESET Motor stopping pin for DCDC 12 V 24 DCDC125TOP Output stopping pin for DCDC 12 V 25 P-GND12 PGND for DCDC 12 V 26 Rs_DC12 Power voltage output pin for DCDC 12 V 27 DCDC12DUT Power vol	9	OUT A	Motor A output pin
11 RS B Motor B channel current detection pin (power supply pin) 12 OUT B Motor B output pin 13 NC Not connected 14 VSS2 Ground pin for LOGIC part (Please connect the pin 14 to FIN.) 15 STROBE Motor STROBE (latch) signal input pin (J: LATCH @ INV_IN: L) 16 CLK Motor serial data signal input pin (J: LATCH @ INV_IN: L) 17 DATA Motor serial data signal input pin 18 OSC_M External chopping reference pin for motor, that sets the chopping frequency. 19 VDD_MO Internal power supply monitori pin for logic part (Internal power supply) 20 Vref Motor steping pin for Motor SETUP (L: Motor operation, H: Motor switching) 21 SETUP Mode switching pin for DCDC 12 V 23 DCDC12STOP Output stopping pin (L: RESET) 24 DCDC12FB Voltage feedback pin for DCDC 12 V 25 P-GND12 PGND for DCDC 12 V 26 Rs_DC12 Power supply input pin (sense resistor connecting pin) for DCDC 12 V 27 DCDC12DUT Power voltage output pin for DCDC 12 V 26 Rs_D3.3 Power voltage output pin for DCDC 3.3 V	F _{IN}	F _{IN}	FIN (VSS): Ground pin for LOGIC
12 OUT B Motor B output pin 13 NC Not connected 14 VSS2 Ground pin for LOGIC part (Please connect the pin 14 to FIN.) 15 STROBE Motor STROBE (latch) signal input pin (J: LATCH @ INV_IN: L) 16 CLK Motor serial data signal input pin 17 DATA Motor serial data signal input pin 18 OSC_M External chopping reference pin for motor, that sets the chopping frequency. 19 VDD_MO Internal power supply montor pin for logic part (Internal power supply) 20 Vref Motor stopping pin for Motor SETUP (L: Motor operation, H: Motor switching) 21 SETUP Mode switching pin for DCDC 12 V 23 DCDC12STOP Output stopping pin for DCDC 12 V 24 DCDC12FB Voltage feedback pin for DCDC 12 V 25 P-GND12 PGND for DCDC 12 V 26 R_S_DC12 Power supply input pin for DCDC 12 V 27 DCDC12DUT Power voltage output pin for DCDC 12 V 28 DCDC3.30UT Power voltage output pin for DCDC 13 V 29 R_S_D3.3 Power voltage output pin for DCDC 3.3 V 30 PGND3.3 PGND for DCDC 3.3 V 31 DCDC3.3FB Power voltage feedback pin for DCDC 3.3 V 32 DC	10	OUTB	Motor B output pin
13 NC Not connected 14 V _{SS2} Ground pin for LOGIC part (Please connect the pin 14 to F _{IN-}) 15 STROBE Motor STROBE (latch) signal input pin (J: LATCH @ INV_IN: L) 16 CLK Motor lock input pin (T: CLK @ INV_IN: L) 17 DATA Motor serial data signal input pin 18 OSC_M External chopping reference pin for motor, that sets the chopping frequency. 19 VDD_MO Internal power supply monitor pin for logic part (Internal power supply) 20 Vref Motor Stepping pin for Motor SETUP (L: Motor operation, H: Motor switching) 21 SETUP Mode switching pin for DCDC 12 V 23 DCDC12STOP Output stopping pin for DCDC 12 V 24 DCDC12FB Voltage feedback pin for DCDC 12 V 25 P-GND12 PGND for DCDC 12 V 26 Rs_DC12 Power voltage output pin for DCDC 12 V 27 DCDC12C0UT Power voltage output pin for DCDC 12 V 28 DCDC3.30UT Power voltage output pin for DCDC 3.3 V 29 Rs_D3.3 Power supply input pin (sense resistor connecting pin) for DCDC 3.3 V 30 PGND3 PGND for DCDC 3.3 V	11	R _{S B}	Motor B channel current detection pin (power supply pin)
14 V _{SS2} Ground pin for LOGIC part (Please connect the pin 14 to F _{IN} .) 15 STROBE Motor STROBE (latch) signal input pin (↓: LATCH @ INV_IN: L) 16 CLK Motor lock input pin (↑: CLK @ INV_IN: L) 17 DATA Motor serial data signal input pin 18 OSC_M External chopping reference pin for motor, that sets the chopping frequency. 19 V _{DD} _MO Internal power supply monitor/pin for Togic part (Internal power supply) 20 Vref Motor Vref input pin 21 SETUP Mode switching pin for Motor SETUP (L: Motor operation, H: Motor switching) 22 Motor RESET Motor stopping pin (L: RESET) 23 DCDC12STOP Output stopping pin for DCDC 12 V 24 DCDC12FB Voltage feedback pin for DCDC 12 V 25 P-GND12 PGND for DCDC 12 V 26 Rs_DC12 Power voltage output pin for DCDC 12 V 27 DCDC12OUT Power voltage output pin for DCDC 12 V 28 DCDC3.30UT Power voltage output pin for DCDC 3.3 V 29 Rs_D3.3 Power supply input pin (sense resistor connecting pin) for DCDC 3.3 V 30 PGND3 PGND for DCDC 3.3 V <td>12</td> <td>OUT B</td> <td>Motor B output pin</td>	12	OUT B	Motor B output pin
15 STROBE Motor STROBE (latch) signal input pin (↓: LATCH @ INV_IN: L) 16 CLK Motor lock input pin (↑: CLK @ INV_IN: L) 17 DATA Motor serial data signal input pin 18 OSC_M External chopping reference pin for motor, that sets the chopping frequency. 19 VDD_MO Internal power supply monitor pin for logic part (Internal power supply) 20 Vref Motor Vref input pin 21 SETUP Motor stopping pin for Motor SETUP (L: Motor operation, H: Motor switching) 22 Motor RESET Motor stopping pin for DCDC 12 V 24 DCDC12STOP Output stopping pin for DCDC 12 V 25 P-GND12 PGND for DCDC 12 V 26 Rs_DC12 Power supply input pin (sense resistor connecting pin) for DCDC 12 V 26 Rs_DC12 Power voltage output pin for DCDC 12 V 27 DCDC12OUT Power voltage output pin for DCDC 12 V 28 DCDC3.30UT Power voltage output pin for DCDC 3.3 V 30 PGND3.3 PGND for DCDC 3.3 V 31 DCDC3.3FB Power voltage feedback pin for DCDC 3.3 V 32 DCDC READY Pin for setting start delay time of DCDC 3.3 V	13	NC	Not connected
16 CLK Motor lock input pin (1: CLK @ INV_IN: L) 17 DATA Motor serial data signal input pin 18 OSC_M External chopping reference pin for motor, that sets the chopping frequency. 19 VDD_MO Internal power supply monitor pin for logic part (Internal power supply) 20 Vref Motor Vref input pin 21 SETUP Motor stopping pin for Motor SETUP (L: Motor operation, H: Motor switching) 22 Motor RESET Motor stopping pin for DCDC 12 V 23 DCDC12STOP Output stopping pin for DCDC 12 V 24 DCDC12FB Voltage feedback pin for DCDC 12 V 25 P-GND12 PGND for DCDC 12 V 26 Rs_DC12 Power supply input pin (sense resistor connecting pin) for DCDC 12 V 27 DCDC12OUT Power voltage output pin for DCDC 12 V 28 DCDC3.30UT Power voltage output pin for DCDC 3.3 V 29 Rs_D3.3 Power supply input pin (sense resistor connecting pin) for DCDC 3.3 V 30 PGND3.3 PGND for DCDC 3.3 V 31 DCDC3.3FB Power voltage feedback pin for DCDC 3.3 V 32 DCDC READY Pin for setting start delay time of DCDC 3.3 V	14	V _{SS2}	Ground pin for LOGIC part (Please connect the pin 14 to FIN.)
17 DATA Motor serial data signal input pin 18 OSC_M External chopping reference pin for motor, that sets the chopping frequency. 19 V _{DD} _MO Internal power supply monitor pin for logic part (Internal power supply) 20 V _{ref} Motor V _{ref} input pin 21 SETUP Mode switching pin for Motor SETUP (L: Motor operation, H: Motor switching) 22 Motor RESET Motor stopping pin (L: RESET) 23 DCDC12STOP Output stopping pin for DCDC 12 V 24 DCDC12FB Voltage feedback pin for DCDC 12 V 25 P-GND12 PGND for DCDC 12 V 26 Rs_DC12 Power supply input pin (sense resistor connecting pin) for DCDC 12 V 27 DCDC12OUT Power voltage output pin for DCDC 12 V 28 DCDC3.30UT Power voltage output pin for DCDC 12 V 29 Rs_D3.3 Power supply input pin (sense resistor connecting pin) for DCDC 3.3 V 30 PGND3.3 PGND for DCDC 3.3 V 31 DCDC3.3FB Power voltage feedback pin for DCDC 3.3 V 32 DCDC READY Pin for setting start delay time of DCDC 3.3 V 33 OSC_D Capacitor connection pin for DCDC 3.3	15	STROBE	Motor STROBE (latch) signal input pin (↓: LATCH @ INV_IN: L)
18OSC_MExternal chopping reference pin for motor, that sets the chopping frequency.19VDD_MOInternal power supply monitor pin for logic part (Internal power supply)20VrefMotor Vref input pin21SETUPMode switching pin for Motor SETUP (L: Motor operation, H: Motor switching)22Motor RESETMotor stopping pin (L: RESET)23DCDC12STOPOutput stopping pin for DCDC 12 V24DCDC12FBVoltage feedback pin for DCDC 12 V25P-GND12PGND for DCDC 12 V26Rs_DC12Power supply input pin (sense resistor connecting pin) for DCDC 12 V27DCDC12OUTPower voltage output pin for DCDC 12 V28DCDC3.30UTPower voltage output pin for DCDC 3.3 V29Rs_D3.3PGND for DCDC 3.3 V30PGND3.3PGND for DCDC 3.3 V31DCDC3.3FBPower voltage feedback pin for DCDC 3.3 V32DCDC READYPin for setting start delay time of DCDC 3.3 V33OSC_DCapacitor connection pin for DCDC 3.3 V34Ccp CCapacitor pin for charge pump (Ccp 2)35Ccp BCapacitor pin for charge pump (Ccp 2)	16	CLK	Motor lock input pin (1: CLK @ INV_IN: L)
18CSC_Mfrequency.19VDD_MOInternal power supply monitoripin for logic part (Internal power supply)20VrefMotor Vref input pin21SETUPModor stopping pin for Motor SETUP (L: Motor operation, H: Motor switching)22Motor RESETMotor stopping pin (L: RESET)23DCDC12STOPOutput stopping pin for DCDC 12 V24DCDC12FBVoltage feedback pin for DCDC 12 V25P-GND12PGND for DCDC 12 V26Rs_DC12Power supply input pin (sense resistor connecting pin) for DCDC 12 V27DCDC12OUTPower voltage output pin for DCDC 12 V28DCDC3.30UTPower voltage output pin for DCDC 3.3 V29Rs_D3.3PGND for DCDC 3.3 V30PGND3.3PGND for DCDC 3.3 V31DCDC3.3FBPower voltage feedback pin for DCDC 3.3 V32DCDC READYPin for setting start delay time of DCDC 3.3 V33OSC_DCapacitor connection pin for DCDC 3.3 V34C _{Cp} CCapacitor pin for charge pump (C _{cp 2})35C _{cp} BCapacitor pin for charge pump (C _{cp 2})	17	DATA	Motor serial data signal input pin
20 V_{ref} Motor V_{ref} input pin21SETUPMode switching pin for Motor SETUP (L: Motor operation, H: Motor switching)22Motor RESETMotor stopping pin (L: RESET)23DCDC12STOPOutput stopping pin for DCDC 12 V24DCDC12FBVoltage feedback pin for DCDC 12 V25P-GND12PGND for DCDC 12 V26 $R_{S_{-}}DC12$ Power supply input pin (sense resistor connecting pin) for DCDC 12 V27DCDC12OUTPower voltage output pin for DCDC 12 V28DCDC3.30UTPower voltage output pin for DCDC 3.3 V29 $R_{S_{-}}D3.3$ Power supply input pin (sense resistor connecting pin) for DCDC 3.3 V30PGND3.3PGND for DCDC 3.3 V31DCDC3.3FBPower voltage feedback pin for DCDC 3.3 V32DCDC READYPin for setting start delay time of DCDC 3.3 V33OSC_DCapacitor connection pin for DCDC 3.3V34 $C_{cp C}$ Capacitor pin for charge pump ($C_{cp 2}$)35 $C_{cp B}$ Capacitor pin for charge pump ($C_{cp 2}$)	18	OSC_M	
21SETUPMode switching pin for Motor SETUP (L: Motor operation, H: Motor switching)22Motor RESETMotor stopping pin (L: RESET)23DCDC12STOPOutput stopping pin for DCDC 12 V24DCDC12FBVoltage feedback pin for DCDC 12 V25P-GND12PGND for DCDC 12 V26Rs_DC12Power supply input pin (sense resistor connecting pin) for DCDC 12 V27DCDC12OUTPower voltage output pin for DCDC 12 V28DCDC3.30UTPower voltage output pin for DCDC 3.3 V29Rs_D3.3PGND for DCDC 3.3 V30PGND3.3PGND for DCDC 3.3 V31DCDC3.3FBPower voltage feedback pin for DCDC 3.3 V32DCDC READYPin for setting start delay time of DCDC 3.3 V33OSC_DCapacitor connection pin for DCDC 3.3 V34C _{Cp} CCapacitor pin for charge pump (C _{cp 2})35C _{cp} BCapacitor pin for charge pump (C _{cp 2})	19	V _{DD} _MO	Internal power supply monitor pin for logic part (Internal power supply)
21SETOPswitching)22Motor RESETMotor stopping pin (L: RESET)23DCDC12STOPOutput stopping pin for DCDC 12 V24DCDC12FBVoltage feedback pin for DCDC 12 V25P-GND12PGND for DCDC 12 V26Rs_DC12Power supply input pin (sense resistor connecting pin) for DCDC 12 V27DCDC12OUTPower voltage output pin for DCDC 12 V28DCDC3.3OUTPower voltage output pin for DCDC 3.3 V29Rs_D3.3Power supply input pin (sense resistor connecting pin) for DCDC 3.3 V30PGND3.3PGND for DCDC 3.3 V31DCDC3.3FBPower voltage feedback pin for DCDC 3.3 V32DCDC READYPin for setting start delay time of DCDC 3.3V33OSC_DCapacitor connection pin for DCDC 3.3V34C _{cp C} Capacitor pin for charge pump (C _{cp 2})35C _{cp B} Capacitor pin for charge pump (C _{cp 2})	20	V _{ref}	Motor V _{ref} input pin
23DCDC12STOPOutput stopping pin for DCDC 12 V24DCDC12FBVoltage feedback pin for DCDC 12 V25P-GND12PGND for DCDC 12 V26R _S _DC12Power supply input pin (sense resistor connecting pin) for DCDC 12 V27DCDC12OUTPower voltage output pin for DCDC 12 V28DCDC3.30UTPower voltage output pin for DCDC 3.3 V29R _S _D3.3Power supply input pin (sense resistor connecting pin) for DCDC 3.3 V30PGND3.3PGND for DCDC 3.3 V31DCDC3.3FBPower voltage feedback pin for DCDC 3.3 V32DCDC READYPin for setting start delay time of DCDC 3.3V33OSC_DCapacitor pin for charge pump (C _{cp 2})35C _{cp B} Capacitor pin for charge pump (C _{cp 2})	21	SETUP	
24DCDC12FBVoltage feedback pin for DCDC 12 V25P-GND12PGND for DCDC 12 V26R_S_DC12Power supply input pin (sense resistor connecting pin) for DCDC 12 V27DCDC120UTPower voltage output pin for DCDC 12 VFINFINFIN (Vss): Ground pin for LOGIC part28DCDC3.30UTPower voltage output pin (sense resistor connecting pin) for DCDC 3.3 V29R_S_D3.3Power supply input pin (sense resistor connecting pin) for DCDC 3.3 V30PGND3.3PGND for DCDC 3.3 V31DCDC3.3FBPower voltage feedback pin for DCDC 3.3 V32DCDC READYPin for setting start delay time of DCDC 3.3V33OSC_DCapacitor connection pin for DCDC oscillating frequency34C _{Cp} CCapacitor pin for charge pump (C _{cp 2})35C _{cp} BCapacitor pin for charge pump (C _{cp 2})	22	Motor RESET	Motor stopping pin (L: RESET)
25P-GND12PGND for DCDC 12 V26R_S_DC12Power supply input pin (sense resistor connecting pin) for DCDC 12 V27DCDC12OUTPower voltage output pin for DCDC 12 VFINFINFIN (VSS): Ground pin for LOGIC part28DCDC3.3OUTPower voltage output pin for DCDC 3.3 V29R_S_D3.3Power supply input pin (sense resistor connecting pin) for DCDC 3.3 V30PGND3.3PGND for DCDC 3.3 V31DCDC3.3FBPower voltage feedback pin for DCDC 3.3 V32DCDC READYPin for setting start delay time of DCDC 3.3V33OSC_DCapacitor connection pin for DCDC 0.3.3V34C _{Cp C} Capacitor pin for charge pump (C _{Cp 2})35C _{cp B} Capacitor pin for charge pump (C _{cp 2})	23	DCDC12STOP	Output stopping pin for DCDC 12 V
26Rs_DC12Power supply input pin (sense resistor connecting pin) for DCDC 12 V27DCDC12OUTPower voltage output pin for DCDC 12 VFINFINFIN (Vss): Ground pin for LOGIC part28DCDC3.3OUTPower voltage output pin for DCDC 3.3 V29Rs_D3.3Power supply input pin (sense resistor connecting pin) for DCDC 3.3 V30PGND3.3PGND for DCDC 3.3 V31DCDC3.3FBPower voltage feedback pin for DCDC 3.3 V32DCDC READYPin for setting start delay time of DCDC 3.3V33OSC_DCapacitor connection pin for DCDC oscillating frequency34C _{cp C} Capacitor pin for charge pump (C _{cp 2})35C _{cp B} Capacitor pin for charge pump (C _{cp 2})	24	DCDC12FB	Voltage feedback pin for DCDC 12 V
27DCDC12OUTPower voltage output pin for DCDC 12 VFINFINFIN (VSS): Ground pin for LOGIC part28DCDC3.3OUTPower voltage output pin for DCDC 3.3 V29RS_D3.3Power supply input pin (sense resistor connecting pin) for DCDC 3.3 V30PGND3.3PGND for DCDC 3.3 V31DCDC3.3FBPower voltage feedback pin for DCDC 3.3 V32DCDC READYPin for setting start delay time of DCDC 3.3V33OSC_DCapacitor connection pin for DCDC 0.33V34C _{cp C} Capacitor pin for charge pump (C _{cp 2})35C _{cp B} Capacitor pin for charge pump (C _{cp 2})	25	P-GND12	PGND for DCDC 12 V
FINFINFIN (VSS): Ground pin for LOGIC part28DCDC3.30UTPower voltage output pin for DCDC 3.3 V29RS_D3.3Power supply input pin (sense resistor connecting pin) for DCDC 3.3 V30PGND3.3PGND for DCDC 3.3 V31DCDC3.3FBPower voltage feedback pin for DCDC 3.3 V32DCDC READYPin for setting start delay time of DCDC 3.3V33OSC_DCapacitor connection pin for DCDC oscillating frequency34C _{cp C} Capacitor pin for charge pump (C _{cp 2})35C _{cp B} Capacitor pin for charge pump (C _{cp 2})	26	R _S _DC12	Power supply input pin (sense resistor connecting pin) for DCDC 12 V
28DCDC3.3OUTPower voltage output pin for DCDC 3.3 V29R _S _D3.3Power supply input pin (sense resistor connecting pin) for DCDC 3.3 V30PGND3.3PGND for DCDC 3.3 V31DCDC3.3FBPower voltage feedback pin for DCDC 3.3 V32DCDC READYPin for setting start delay time of DCDC 3.3V33OSC_DCapacitor connection pin for DCDC oscillating frequency34C _{cp C} Capacitor pin for charge pump (C _{cp 2})35C _{cp B} Capacitor pin for charge pump (C _{cp 2})	27	DCDC12OUT	Power voltage output pin for DCDC 12 V
29Rs_D3.3Power supply input pin (sense resistor connecting pin) for DCDC 3.3 V30PGND3.3PGND for DCDC 3.3 V31DCDC3.3FBPower voltage feedback pin for DCDC 3.3 V32DCDC READYPin for setting start delay time of DCDC 3.3V33OSC_DCapacitor connection pin for DCDC oscillating frequency34C _{cp C} Capacitor pin for charge pump (C _{cp 2})35C _{cp B} Capacitor pin for charge pump (C _{cp 2})	F _{IN}	F _{IN}	FIN (VSS): Ground pin for LOGIC part
30PGND3.3PGND for DCDC 3.3 V31DCDC3.3FBPower voltage feedback pin for DCDC 3.3 V32DCDC READYPin for setting start delay time of DCDC 3.3V33OSC_DCapacitor connection pin for DCDC oscillating frequency34C _{cp C} Capacitor pin for charge pump (C _{cp 2})35C _{cp B} Capacitor pin for charge pump (C _{cp 2})	28	DCDC3.3OUT	Power voltage output pin for DCDC 3.3 V
31 DCDC3.3FB Power voltage feedback pin for DCDC 3.3 V 32 DCDC READY Pin for setting start delay time of DCDC 3.3 V 33 OSC_D Capacitor connection pin for DCDC oscillating frequency 34 C _{cp C} Capacitor pin for charge pump (C _{cp 2}) 35 C _{cp B} Capacitor pin for charge pump (C _{cp 2})	29	R _S _D3.3	Power supply input pin (sense resistor connecting pin) for DCDC 3.3 V
32 DCDC READY Pin for setting start delay time of DCDC 3.3V 33 OSC_D Capacitor connection pin for DCDC oscillating frequency 34 C _{cp C} Capacitor pin for charge pump (C _{cp 2}) 35 C _{cp B} Capacitor pin for charge pump (C _{cp 2})	30	PGND3.3	PGND for DCDC 3.3 V
33 OSC_D Capacitor connection pin for DCDC oscillating frequency 34 C _{cp C} Capacitor pin for charge pump (C _{cp 2}) 35 C _{cp B} Capacitor pin for charge pump (C _{cp 2})	31	DCDC3.3FB	Power voltage feedback pin for DCDC 3.3 V
34 C _{cp C} Capacitor pin for charge pump (C _{cp 2}) 35 C _{cp B} Capacitor pin for charge pump (C _{cp 2})	32	DCDC READY	Pin for setting start delay time of DCDC 3.3V
35 C _{cp B} Capacitor pin for charge pump (C _{cp 2})	33	OSC_D	Capacitor connection pin for DCDC oscillating frequency
	34	C _{cp C}	Capacitor pin for charge pump ($C_{cp 2}$)
36 C _{cp A} Capacitor pin for charge pump (C _{cp 1})	35	С _{ср В}	Capacitor pin for charge pump ($C_{cp 2}$)
	36	C _{cp A}	Capacitor pin for charge pump $(C_{cp 1})$

DataShe

Note: When the IC is mounted in the wrong orientation, high voltage will be applied to the low-withstand-voltage block, which causes the IC to be destroyed. Please check the pin 1 positioning mark when mounting it. While the IC is powered-on, do not connect the motor to the IC or vice-versa.

DataSheet4U.com

et4U.com

Function

16-bit serial input signals for motor (apply the signals in reverse order of TB62201AF serial input signals.)

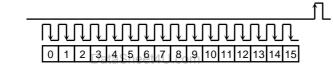
Data Bit	Name	Function
0	Phase A	Phase information (H: out A is high)
1	Current A3	
2	Current A2	A shapped surrent softing
3	Current A1	A-channel current setting
4	Current A0	
5	Decay Mode A1	A-channel current attenuation ratio setting
6	Decay Mode A0	A-channel current alteridation ratio setting
7	Phase B	Phase information (H: out B is high)
8	Current B3	
9	Current B2	B-channel current setting
10	Current B1	B-channel current setting
11	Current B0	
12	Decay Mode B1	B-channel current attenuation ratio setting
13	Decay Mode B0	B-channel current attenuation fatto setting
14	Torque 1	Torque setting
15	Torque 0	

et4U.com

Strobe CLK

DATA

																1
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	


DataShe

Note: The direction of DATA and CLK indicated above is under the condition of when INV_IN = H.

Data input signal at setting mixed decay timing table (Apply the signals in reverse order of TB62201AF data input signals.)

Name	Function	Initial Value
Current Mode 3	Selects Slow or Mixed Decay Mode	1: Mixed Decay Mode
Decay Mode 3-2		1
Decay Mode 3-1	Sets decay 3 ratio (decay 3 ratio)	1
Decay Mode 3-0		1: 100%
Current Mode 2	Selects Slow or Mixed Decay Mode	1: Mixed Decay Mode
Decay Mode 2-2		1
Decay Mode 2-1	Sets decay 2 ratio	0
Decay Mode 2-0		1: 75%
Current Mode 2	Selects Slow or Mixed Decay Mode	1: Mixed Decay Mode
Decay Mode 1-2		0
Decay Mode 1-1	Sets decay 1 ratio	1
Decay Mode 1-0		0: 37.5%
Current Mode 0	Selects Slow or Mixed Decay Mode	0: Mixed Decay Mode
Decay Mode 0-2		0
Decay Mode 0-1	Sets decay 0 ratio	0
Decay Mode 0-0	1	0: 12.5%
· · · · · · · · · · · · · · · · · · ·	Current Mode 3Decay Mode 3-2Decay Mode 3-1Decay Mode 3-0Current Mode 2Decay Mode 2-2Decay Mode 2-1Decay Mode 2-0Current Mode 2Decay Mode 1-2Decay Mode 1-2Decay Mode 1-0Current Mode 0Decay Mode 0-2Decay Mode 0-1	Current Mode 3Selects Slow or Mixed Decay ModeDecay Mode 3-2Sets Slow or Mixed Decay ModeDecay Mode 3-1Sets decay 3 ratio (decay 3 ratio)Decay Mode 3-0Sets decay 3 ratio (decay 3 ratio)Current Mode 2Selects Slow or Mixed Decay ModeDecay Mode 2-2Sets decay 2 ratioDecay Mode 2-1Sets decay 2 ratioDecay Mode 2-0Selects Slow or Mixed Decay ModeDecay Mode 2-0Selects Slow or Mixed Decay ModeDecay Mode 2-0Selects Slow or Mixed Decay ModeDecay Mode 1-2Sets decay 1 ratioDecay Mode 1-1Sets decay 1 ratioDecay Mode 1-0Selects Slow or Mixed Decay ModeDecay Mode 0-2Sets decay 0 ratio

Strobe CLK DATA

et4U.com

DataShe

Note: The direction of DATA and CLK indicated above is under the condition of when $INV_IN = H$.

Table for Setting (1) D0

Setting Phase A

Data Bit	Name	Function	Phase	Setting Value Phase
0	Phase A	Switching phases	0	OUT A = L, OUT \overline{A} = H
			1	$OUT A = H, OUT \overline{A} = L$

Table for Setting (2) D1, D2, D3, D4, D8, D9, D10, D11

Setting Current

Data Bit	Step	A3	A2	A1	A0	B3	B2	B1	В0	Setting Angle (degree)
1	16	1	1	1	1	0	0	0	0	90
2	15	1	1	1	1	0	0	0	1	84
3	14	1	1	1	0	0	0	1	0	79
4	13	1	1	0	1	0	0	1	1	73
	12	1	1	0	0	0	1	0	0	68
8	11	1	0	1	1	0	1	0	1	61
9	10	1	0	1	0	0	1	1	0	56
10	9	1	0	0	1	0	1	1	1	51
11	8	1	0	0	0	1	0	0	0	45
	7	0	1	1	1	1	0	0	1	39
	6	0	1	1	0	1	0	1	0	34
	5	0	1	0	1	1	0	1	1	28
	4	0	1	0	0	1	1	0	0	23
	3	0	0	1	1	1	1	0	1	17
	2	0	0	1	0	1	1	1	0	11
	1	0	0	0	1	1	1	1	1	6
	0	0	0	0	0	1	1	1	1	0

Table for Setting (3) D5, D6, D12, D13

et4U.com

Setting Decay Mode

DataSheet4U.com

DataShe

		-			
Data Bit	Name	Function	Decay Mode 1	Decay Mode 0	Setting Value Decay Mode
5	Decay Mode A1	Setting Decay Mode	0	0	Mixed Decay Mode: 12.5%
6	Decay Mode A0		0	1	Mixed Decay Mode: 37.5%
			1	0	Mixed Decay Mode: 75.0%
			1	1	Fast Decay Mode

Table for Setting (3) D7

Setting Phase B

Data Bit	Name	Function	Phase	Setting Value Phase
7	Phase B	Switching phases	0	OUT B = L, OUT \overline{B} = H
		(+side, -side)	1	OUT B = H, OUT \overline{B} = L

Table for Setting (3) D14, D15

Setting Torque

Data Bit	Name	Function	Torque 1	Torque 0	Setting Value Torque (typ.)
0	Torque 0	Setting current range	0	0	25%
1	Torque 1		0	1	50%
			1	0	75%
			1	1	100%

Function of External Input Pins

External Torque 1.2

Pin Number	Name	Function	Torque 1	Torque 0	Setting Value Torque (typ.)
3	TORQUE S1	Setting current range	0	0	25%
2	TORQUE S0		0	1	50%
			1	0	75%
			1	1	100%

When 1 is applied to either the external Torque 1.2 or the serial data Torque 1.2, 1 is reflected such as a function of OR gate.

INV_IN

Pin number	Name	Function	Torque 1	Setting Value Torque (typ.)
4	INV_IN	Determine which direction to reflect the STROBE CLK of the	Н	The same direction as TB62201AF Down CLK Up Edge Strobe
		serial data input.	L	The opposite direction from TB62201AF Up CLK Down Edge Strobe

et4U.com

DataSheet4U.com

DataShe

Maximum Ratings (Ta = 25°C)

Characteristics	Symbol	Rating	Unit	Remarks
Motor/DCDC power supply voltage	V _M	30	V	
Motor output current	IOUT	0.7	A/phase	(Note 1)
Maximum DCDC converter input current	IDCOUT	1.2	А	(Note 2)
Maximum DCDC initial charge current	IDCOUT_S	0.8	А	(Note 3)
Maximum constant output current	I _{DCconst}	I _{DCOUT} × 0.8	А	(Note 4)
Maximum Vref voltage range	V _{erf}	4.0	V	
Current detect pin voltage	V _{RS}	$V_{M} \pm 4.5$	V	
Maximum voltage at charge pump (CCP1) pin	V _H	V _M + 7.0	V	Inside regulator
Logic input voltage	V _{IN}	Up to 5.7	V	(Note 5)
Power discipation	D-	1.4	w	(Note 6)
Power dissipation	PD	3.2	vv	(Note 7)
Operating temperature	T _{opr}	-40 to 85	°C	
Storage temperature	T _{stg}	-55 to 150	°C	
Junction temperature	Tj	150	°C	

Note 1: Perform thermal calculations for the maximum current value of the motor under normal conditions. Use the IC at 0.6 A or less per phase.

Note 2: Under the condition of DCDC output voltage × 0.9 V or higher (typ.) In this case, the input current to the power supply becomes the current value (1.2 A) that is controlled by the sense resistor.

Note 3: Under the condition of DCDC output voltage \times 0.9 V or lower (typ.)

Note 4: The output current is lower by 20% than the input current value of the DCDC converter (calculated value). When The value of IDC_{OUT} is 1.2 A (max), the output current will be 0.96 A (max).

- Note 5: Input 5.5 V or less as VIN.
- Note 6: Measured for the IC only. $(Ta = 25^{\circ}C)$
- Note 7: Measured when mounted on the board. $(Ta = 25^{\circ}C)$ Ta: IC ambient temperature T_{opr}: IC ambient temperature when starting operation

Ti: IC chip temperature during operation Ti (max) is controlled by TSD (thermal shutdown circuit)

Note : Notes on maximum voltage

This device does not incorporate an overvoltage protection circuit. When an excessive voltage is applied to the device, it may be destroyed. Thus, make sure that the power supply voltage is within the specification value.

et4U.com

DataShe

Recommended Operating Conditions (Ta = 0°C to 85°C)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Voltage range	VM	—	14	24	28	V
Motor output current	IOUT	Ta = 25°C, per phase	_	0.4	0.6	А
DCDC converter current range	IDCOUT	—	_	1.0	1.1	А
DCDC initial charge current	I _{DCOUT_S}	—	_	0.6	0.7	А
Maximum constant output current	I _{DCOut_Const}	Maximum DCDC initial charge current $\times 0.8$	_	0.8	0.84	А
Logic input voltage	V _{IN}	—	GND	_	5	V
Clock frequency	fCLK	—	_	1.0	25	MHz
Motor chopping frequency	f _{chop} _M	V _M = 24 V	40	100	150	kHz
DCDC chopping frequency	f _{chop} _D	V _M = 24 V	40	100	150	kHz
V _{ref} reference voltage	V _{ref}	V _M = 24 V	0	2.0	3.0	V
Current detect pin voltage	V _{RS}	$V_{M} = 24 V$	0	±1.0	±1.5	V

Note: In terms of the temperature withstand capability, the maximum value of T_j should be approximately 120°C.

Operating Precaution

This device does not incorporate an overvoltage protection circuit. Thus, if an excess voltage is applied to the IC, the IC may be destroyed. Please design the IC so that an excess voltage will not be applied to the IC.

et4U.com

DataSheet4U.com

DataShe

Motor Electrical Characteristics 1 (unless otherwise specified, Ta = 25°C, V_M = 24 V, Ccp1 = 0.22 μ F, Ccp2 = 0.022 μ F)

Characteris	tics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
	High	V _{IN (H)}		CLK, Motor RESET, STROBE, DATA	2.0	3.3	5.4	
Input voltage	Low	V _{IN (L)}	DC	Torque 0, Torque 1, SETUP pins	GND - 0.4	GND	0.8	V
Input hysteresis		V _{IN (HIS)}	DC	CLK input pin	_	0.3	—	V
Input ourront 1		lin1 (H)		CLK STROPE DATA ping			1.0	^
Input current 1		I _{IN1 (L)}	DC	CLK, STROBE, DATA pins	_	—	1.0	μA
Input ourront 2		I _{IN2} (H)		Motor RESET, SETUP pins	_	—	100	۸
Input current 2		I _{IN2 (L)}		Motor RESET, SET OF pins			100	μA
		IM1		OUT = open, motor logic = L DCDC3.3 ON (100-kHz external operation) $V_M = 24 V$, motor output stage = OFF Charge pump = charged $C_{cp1} = 0.22 \mu$ F, $C_{cp2} = 0.02 \mu$ F	8	12	15	
Current dissipation	(Pin V _M)	IM2	DC	OUT = open, fchop = 100 kHz (phase input 200 kHz) DCDC3.3 ON (100-kHz external operation) $V_M = 24 V$, motor output stage = open Charge pump = charged $C_{cp1} = 0.22 \mu$ F, $C_{cp2} = 0.02 \mu$ F	22	24	26	mA
		IM3		OUT = open, chopping = 100 kHz DCDC3.3 ON (100-kHz external operation) DCDC12 ON (100-kHz external operation) Charge pump = charged $C_{cp1} = 0.22 \ \mu\text{F}, C_{cp2} = 0.02 \ \mu\text{F}$	24	30	35	
Output standby current	Upper	I _{OH}	Da	$V_{RS} = V_M = 24 V$, $V_{out} = 0 V$, $\overline{Motor RESET} = H$, DATA = all L	-400	-300	-200	μA
Output bias current	Upper	I _{OB}	DC	$V_{RS} = V_M = 24 V$, $V_{out} = 24 V$, RESET = H, DATA = all L	-200	-120	-80	μΑ
Output leakage current	Lower	I _{OL}		$V_{RS} = V_M = C_{cp A} = V_{out} = 24 V,$ Motor RESET = L			1.0	μΑ
	HIGH (reference)	V _{RS (H)}		V _{ref} = 3.0 V, V _{ref} (gain) = 1/4.0 TORQUE = (H.H) = 100% setting		100	_	
Comparator reference voltage	MID HIGH	V _{RS (MH)}	DC	$V_{ref} = 3.0 \text{ V}, V_{ref} \text{ (gain)} = 1/4.0$ TORQUE = (H.L) = 75% setting	73	75	77	%
ratio	MID LOW	V _{RS (ML)}		$V_{ref} = 3.0 \text{ V}, V_{ref} \text{ (gain)} = 1/4.0$ TORQUE = (L.H) = 50% setting	48	50	52	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	LOW	V _{RS (L)}		$V_{ref} = 3.0 V$, V_{ref} (gain) = 1/4.0 TORQUE = (L.L) = 25% setting	23	25	27	
Output current diffe	rential	Δl _{out1}	DC	Differences between output current channels I _{out} = 700 mA	-5		5	%
Output current settin differential	ng	ΔI_{out2}	DC	l _{out} = 700 mA	-5	_	5	%
R _S pin current		I _{RS}	DC	$V_{RS} = 24 \text{ V}, V_M = 24 \text{ V},$ $\overline{\text{Motor RESET}} = L (RESET status)$		_	10	μA
Dutput transistor drain-source		R _{ON (D-S)} 1		I _{out} = 1.0 A, T _j = 25°C, Drain-source		0.7	0.85	
		R _{ON} (S-D) 1		$I_{out} = 1.0 \text{ A}, T_j = 25^{\circ}\text{C}, \text{ Source-drain}$		0.7	0.85	Ω
On-resistance			$I_{out} = 1.0 \text{ A}, T_j = 105^{\circ}\text{C}, \text{Drain-source}$		0.9	1.1		
		R _{ON} (S-D) 2	1	I _{out} = 1.0 A, T _i = 105°C, Source-drain		0.9	1.1	1

et4U.com

DataShe

Motor Electrical Characteristics 2 (unless otherwise specified, Ta = 25°C, V_M = 24 V, Ccp1 = 0.22 μ F, Ccp2 = 0.022 μ F)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Internal logic power supply voltage	V _{DD}	DC	Automatically created	4.7	5.0	5.3	V
V _{ref} input voltage	V _{ref}	DC	$\overline{\text{Motor RESET}} = \text{H}$, Output on	0	—	3.3	V
V _{ref} input current	I _{ref}	DC	$\overline{Motor RESET} = H,$ Output off, V _{ref} = 3.0 V	20	45	60	μΑ
V _{ref} attenuation ratio	V _{ref (gain)}	DC	$\overline{\text{Motor RESET}} = \text{H}, \\ \text{Output on, } V_{\text{ref}} = 0 \text{ V to } 3.3 \text{ V}$	1/3.8	1/4	1/4.2	_
TSD temperature	T _j TSD (Note 1)	DC	_	130	150	170	°C
V _M return voltage	V _{MR}	DC	$\overline{\text{Motor RESET}} = \text{H}, \text{STRBE} = \text{H}$	10.5	11.0	11.5	V
Over current protected circuit operation current	I _{SD} (Note 2)	DC	f _{chop} = 100 kHz set	_	3.0		A

Note 1: Thermal shutdown (TSD) circuit

When the IC junction temperature reaches the specified value and the TSD circuit is activated, the internal reset circuit is activated switching the outputs of both motors to off. When the temperature is set between 130 (min) to 170°C (max), the TSD circuit operates. When the TSD

circuit is activated, the function data latched at that time are cleared. Output is halted until the reset is released. While the TSD circuit is in operation, the charge pump is halted.

Note 2: Overcurrent protection circuit

When current exceeding the specified value flows to the DCDC output, the internal reset circuit is activated switching the outputs of both shafts to off.

When the ISD circuit is activated, the function data latched at that time are cleared.

The overcurrent protection circuit remains activated until the V_M voltage is reapplied. Activating the ISD initializes all the circuits in the IC, which causes the charge pump to be stopped. For the failsafe operation, insert a fuse in the power supply.

et4U.com

www.DataSheet4U.com

16

Motor Electrical Characteristics 3

(Ta = 25°C, V_M = 24 V, I_{out} = 0.7 A, C_{cp1} = 0.22 μ F, C_{cp2} = 0.022 μ F)

Characteristics	Symbol	Test Circuit	Test Condi	tion	Min	Тур.	Max	Unit
			θA = 90 (θ16)		_	100	_	
			θΑ = 84 (θ15)			100	_	
			θΑ = 79 (θ14)		93	98	_	
			θΑ = 73 (θ13)		91	96	_	
			θΑ = 68 (θ12)		87	92	97	
			θA = 62 (θ11)		83	88	93	
			θΑ = 56 (θ10)		78	83	88	
			θΑ = 51 (θ9)		72	77	82	
Chopper current	Vector	DC	θΑ = 45 (θ8)	—	66	71	76	%
			θΑ = 40 (θ7)		58	63	68	
			θΑ = 34 (θ6)		51	56	61	
			θΑ = 28 (θ5)		42	47	52	
			θΑ = 23 (θ4)		33	38	43	
			θΑ = 17 (θ3)		24	29	34	
			θΑ = 11 (θ2)		15	20	25	
			θΑ = 6 (θ1)		5	10	15	
			$\theta A = 0 \ (\theta 0)$			0		

DCDC Converter Electrical Characteristics 1 (unless otherwise specified, Ta = 25°C, $V_{DD} = 3.3 \text{ V}, V_M = 24 \text{ V}, C_{cp1} = 0.22 \mu\text{F}, C_{cp2} = 0.022 \mu\text{F})$

Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
	ΔV_{out1}		Output voltage error $V_{out} = 3.3 V$, FB with 1% resistor				
			0.96 A, C = 470 μ F, L = 470 μ F				
DCDC output voltage error (DCDC load regulation)		DC	Output voltage error	-5	0	5	%
	ΔV_{out2}		V _{out} = 3.3 V, FB with 1% resistor				
			$ I_{out} = 0.7 \text{ A}, \text{ C} = 470 \ \mu\text{F}, \\ L = 470 \ \mu\text{F}, \ \text{V}_{M} = 1228 \ \text{V} $				
DCDC Pin FB input current	I _{IN (FB)}	DC	V _M = 24 V, V _{IN (FB)}			500	nA
Pin FB threshold voltage	V _{th (FB)}	DC	—	_	2.5	_	V
Soft/full switching voltage ratio	$V_{DC}SF$	DC	I _{out} = 700 mA	90	92	94	%
DCDC output off leak current	lana	DC	V _M = 24 V, upper	-200			nA
Debe output on leak current	IODC	DC	$V_M = 24 V$, lower	-400 — —			ПА
DCDC Maximum duty cycle	DC_duty	DC	—	_	90	_	%
	RON (D-S) 1		$I_{out} = 1.0 \text{ A}, T_j = 25^{\circ}\text{C},$ forward direction		0.7	0.84	
Output transistor drain – source ON	RON (D-S) 1	DC	$I_{out} = 1.0 \text{ A}, T_j = 25^{\circ}\text{C},$ opposite direction		0.7	0.84	Ω
resistance	RON (D-S) 2		$I_{out} = 1.0 \text{ A}, T_j = 105^{\circ}\text{C},$ forward direction	_	0.9	1.1	22
	RON (D-S) 2		$I_{out} = 1.0 \text{ A}, T_j = 105^{\circ}\text{C},$ opposite direction		0.9	1.1	

DataSheet4U.com

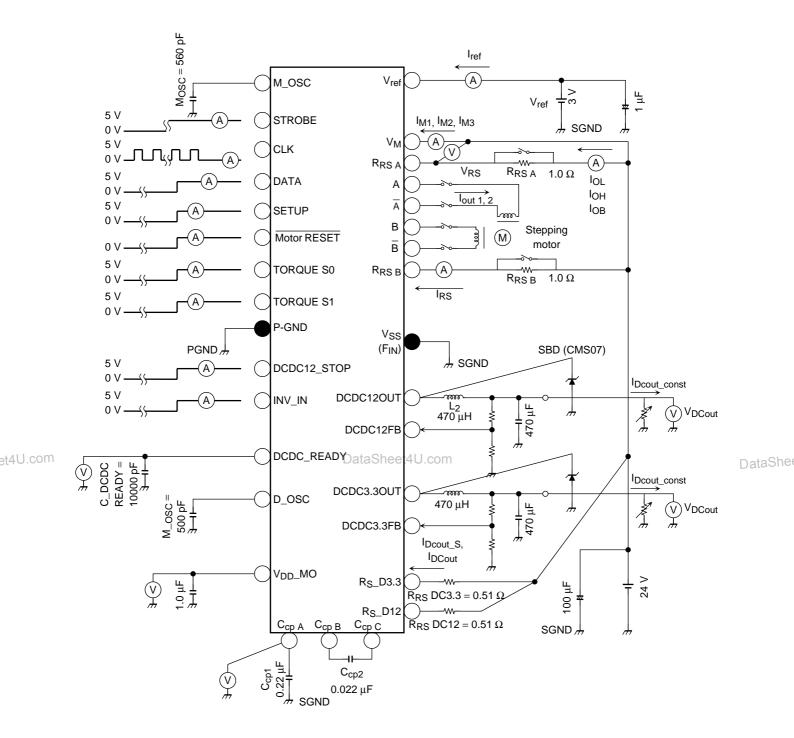
DataShe

AC Characteristics for Motor Driver (Ta = 25°C, V_M = 24 V, 6.8 mH/5.7 Ω , C_{cp1} = 0.22 μ F, C_{cp2} = 0.022 μ F)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Motor clock frequency	fCLK	AC	_	1.0		25	MHz
	t _w (CLK)			40	_	_	
Motor minimum clock pulse width	t _{wp} (CLK)	AC	—	20	_	—	ns
	t _{wn} (CLK)			20		—	
	^t STROBE			40		_	
Motor minimum STROBE pulse width	tSTROBE (H)	AC	—	20		_	ns
	^t STROBE (L)			20		_	
Motor data setup time	t _{suSIN-CLK}	AC		20			ns
	t _{su} ST-CLK	7.0		20			110
Motor data hold time	^t hSIN-CLK	AC		20	—		ns
	^t hCLK-ST	7.0		20			110
	tr		Output load: 6.8 mH/5.7 Ω		0.1		
	t _f				0.1		
Motor output transistor switching	^t pLH (ST)	AC	STROBE (1) to VOUT	_	15		μs
characteristic	^t pHL (ST)	7.0	Output load: 6.8 mH/5.7 Ω		10		
	^t pLH (CR)		CR to V _{OUT}		1.2		
	^t pHL (CR)		Output load: 6.8 mH/5.7 Ω		2.5		
Motor noise rejection dead band time	t _{BLNK}	AC	$I_{out} = 0.7 A$	180	300	400	ns
Motor CR reference signal oscillation frequency	fcr D	AC ataShe	C _{osc} = 560 pF et4∪.com	640	840	1000	kHz
	f _{chop} (min)		Output active (I _{out} = 0.7 A) Step fixed,				
Motor chopping frequency range	f _{chop (typ.)} f _{chop (max)}	AC	$\begin{array}{l} \text{Step fixed,} \\ \text{C}_{cp \ 1} = 0.22 \ \mu\text{F}, \\ \text{C}_{cp \ 2} = 0.022 \ \mu\text{F} \end{array}$	40	100	150	kHz
Motor motor chopping frequency	f _{chop} (M)	AC	Output active (I _{out} = 0.7 A) M_osc CLK = 800 kHz	_	105	_	kHz
Charge pump rising time	tong	AC	$\begin{array}{l} C_{cp2}=0.22 \ \mu\text{F}, \ C_{cp}=0.02 \ \mu\text{F} \\ V_M=24 \ V, \ V_{MR}=\text{OFF} \ are \\ reference \ voltages \end{array}$	_	0.5	1.0	ms

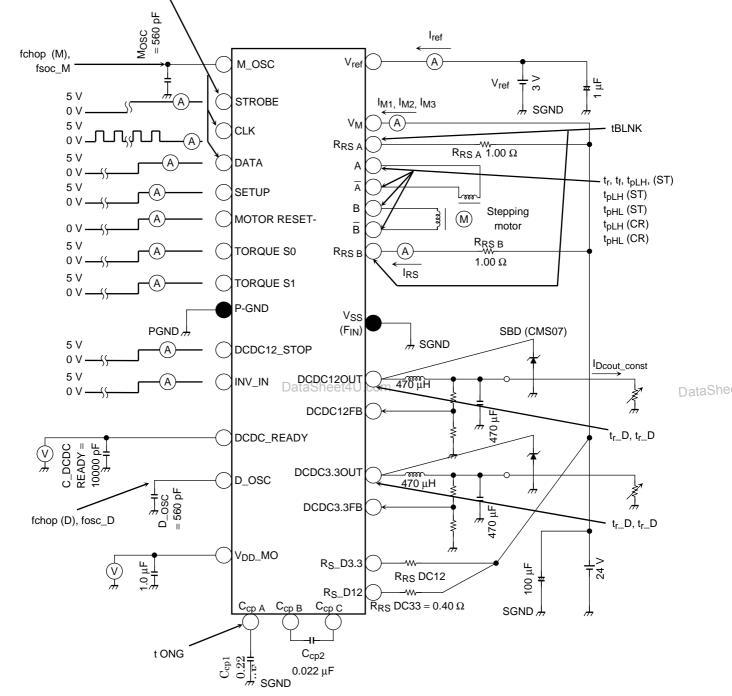
AC Characteristics for DCDC Converter (Ta = 25°C, V_M = 24 V, 470 μ H, 470 μ F)

Characteristics	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit
Output transistor switching	t _{r_D}	AC	470 μH/470 μF	_	0.1	_	μs
characteristic	t _{f_D}		470 μι ν470 μι		0.1	—	μο
DCDC reference signal oscillation frequency	fosc_D	AC	C _{osc} = 560 pF	_	90	_	kHz
DCDC setting frequency range	f _{chop_D}	AC	_	40	100	150	kHz


DataShee

DataSheet4U.com

et4U.com


www.DataSheet4U.com

Test Circuit (DC characteristics)

Test Circuit (AC characteristics)

FCLK, tw (CLK), twp (CLK), twn (CLK) TSTROBE, tSTROBE (H), tSTROBE (L) TsuSin-CLK, tsuST-CLK, thSin-CLK, thCLK-ST

et4U.com

www.DataSheet4U.com

Calculation of Set Current

To obtain the motor setting current value (peak current), values of R_{RS} , V_{ref} and Torque should be determined according to the equation below.

 $I_{out} (max) = \frac{1}{V_{ref} (gain)} \times V_{ref} (V) \times \frac{\text{Torque} (\text{torque} = 100, 75, 50, 25\%: \text{input serial data})}{R_{RS} (\Omega)}$

 $1/V_{ref}$ (gain): $1/V_{ref}$ attenuation ratio is 1/4.0 (typ.).

For example,

to input V_{ref} = 1 V and Torque = 100% and to output I_{out} = 0.25 A, R_{RS} = 1.0 Ω (0.1 W or more) is required.

Formulas for Calculating Reference Oscillation Frequency (chopping reference frequency)

The M_osc oscillation frequency ($f_{osc}M$) and, chopping frequency (f_{chop}) can be calculated by the following formulas :

$$fosc_M = \frac{1}{KA \times (CR \times 36000R + KB \times C)} [Hz]$$

KA (constant): 0.523

KB (constant): 600

 $R = 3.6 \text{ k}\Omega$ (internal resistor)

$$f_{chop} = \frac{M_{osc}}{8} [Hz]$$

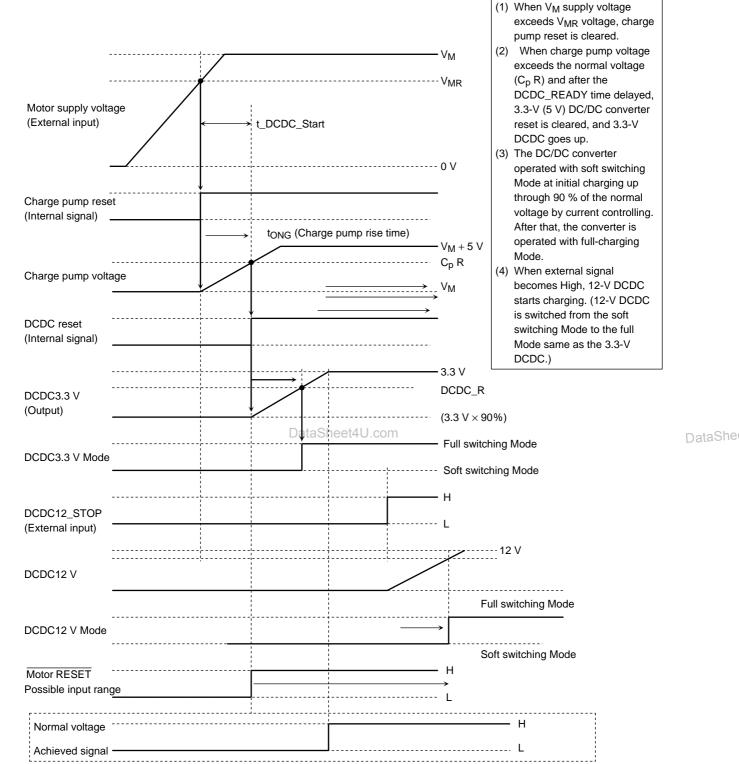
Example: When $C_{OSC} = 560 \text{ pF}$ is connected, $M_{osc} = 813 \text{ kHz}$. At this time, the chopping frequency fchop is fchop $f_{osc}/8 = 101 \text{ kHz}$.

DataShe

Note: $f_{chopc} = \frac{1}{f_{osc}}$

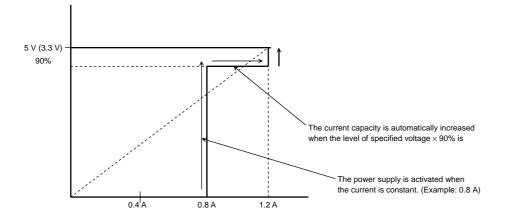
 $t_{OSC_M} = t \text{ (charge)} + t \text{ (discharge)}$ t_{OSC_M} : Motor OSC oscillation cycle t (charge): Motor OSC charge time

DCDC Converter Oscillating Frequency


 $\label{eq:DCDC} \begin{array}{l} \mbox{fDCDC PWM frequency} = 50 \ (\mu) / (0.8 \times {\rm COSC_D}) \ ({\rm Hz}) \\ \mbox{PWM frequency for DCDC block is about 100 kHz when COSC_D is 620 pF.} \end{array}$

Example:

 $COSC_D = 680 \text{ pF}: 91 \text{ kHz} \\ = 620 \text{ pF}: 100 \text{ kHz} \\ = 560 \text{ pF}: 111 \text{ kHz} \\ = 510 \text{ pF}: 122 \text{ kHz} \\ = 470 \text{ pF}: 133 \text{ kHz} \\ = 390 \text{ pF}: 160 \text{ kHz} \end{cases}$


et4U.com

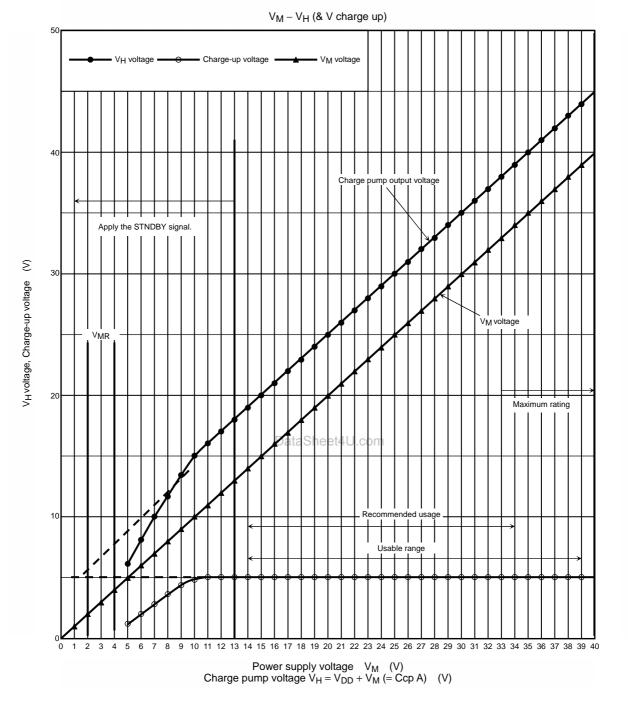
Startup Sequence of Power Supply (Voltage)

et4U.com

Graph of the Power Supply on DCDC Input Side

Equations for Calculating Maximum Current Values in Soft-Start Mode and Full Mode

The values of limited current of the DCDC block in Soft-start Mode and Full Mode are obtained using the following equations.


- (1) When the specified voltage is 0% to 90% of the voltage range The maximum current value in Soft-start Mode : I DCout_S = 0.33/R RS_D33 (or D12) (A)
- (2) When the specified voltage is 90% to 100% of the voltage range
 The maximum current value in Full Mode
 I DC_out = I DCout_S × 1.5 (A)
 When the current is specified in Full Mode, the current value which can be driven out is obtained using the following equation.
 The maximum load current
 I DCout_const = I DC_out × 0.8 (A)

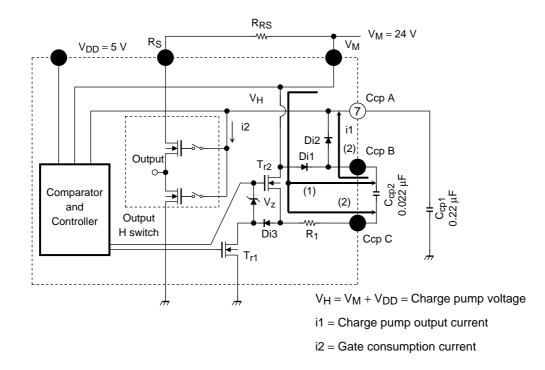
DataShe

et4U.com

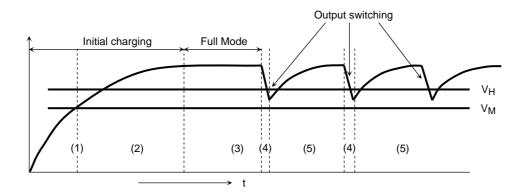
DataSheet4U.com

Relationship between V_M and V_H (charge pump voltage)

et4U.com

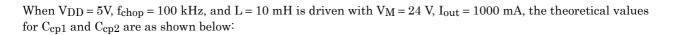

Note: V_{DD} = 5 V

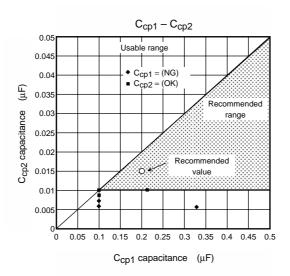
 $C_{cp1} = 0.22 \ \mu\text{F}, \ C_{cp2} = 0.022 \ \mu\text{F}, \ f_{chop} = 150 \ \text{kHz}$


(Keep in mind that the temperatures of the charge pump capacitors change.)

DataShe

Charge Pump Circuit Operation




- At initial charging
 - (1) When the RESET circuit is released, Tr1 is turned on. Then Tr2 is turned off and C_{cp2} is charged from the V_M power supply via Di1.
 - (2) When Tr1 is turned off and Tr2 is turned on, C_{cp1} is charged from C_{cp2} via Di2.
 - (3) When the potential difference between V_M and V_H ($C_{cp} A$ pin voltage = charge pump voltage) reaches V_{DD} or higher, the operation of the charge pump circuit stops. (In Full Mode)
- When IC is operating
 - (4) C_{cp1} charge is used at f_{chop} switching and the V_H potential drops.
 - (5) Charges up by (1) and (2) above.

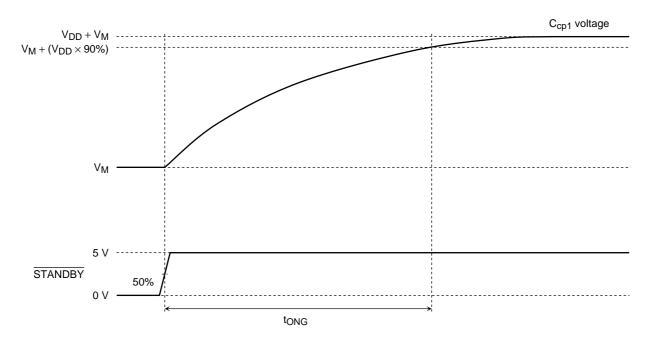
DataShe

External Constant of Charge Pump

For the combination of C_{cp1} and C_{cp2} please refer to the shaded area in the figure above.

To shib are commends the relation of C_{cp1} : $C_{cp2} \ge 10$: 1.

When the values of C_{cp1} and C_{cp2} are specified, perform an adequate test and allow sufficient margins for the values.


Please use the recommended values of C_{cp1} = 0.22 μF and C_{cp2} = 0. 022 μF for normal operation.

et4U.com

DataSheet4U.com

DataShe

Startup Time of Charge Pump

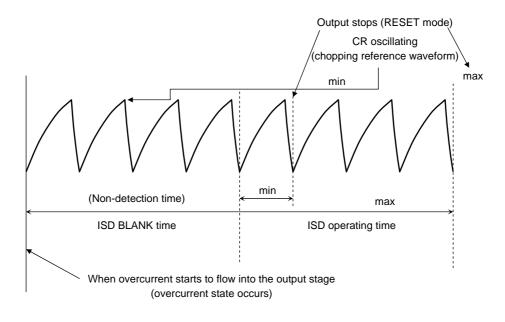
tong: Time taken for capacitor C_{cp2} (charging capacitor) to fill up C_{cp1} (capacitor used to save charge) to V_M + V_{DD} after a reset is released.

Until the voltage of C_{cp1} reaches $V_M + V_{DD}$, the motor and the DCDC converter do not operate normally. To prevent erroneous operations, the TB62205F incorporates a protection circuit.

When the voltage of the charge pump is increased up to the specified level, the motor can operate standalone. However, the initial charging of the DCDC converter starts at this timing. Thus, the DCDC converter startup time should be included when the system startup time is set.

Basically, the larger the C_{cp1} capacitance, the longer the initial charge-up time but the smaller the voltage fluctuation.

The smaller the C_{cp1} capacitance, the shorter the initial charge-up time but the larger the voltage fluctuation.


Depending on the combination of capacitors (especially with small capacitance), voltage may not be sufficiently boosted. Thus, use the capacitors under the capacitor combination conditions ($C_{cp1} = 0.22 \ \mu F$, $C_{cp2} = 0.022 \ \mu F$) recommended by Toshiba.

et4U.com

27

Operating Time of Overcurrent Protection Circuit

ISD non-detection time and ISD operating time

The overcurrent protection circuit has a non-detection time to prevent erroneous detection of spike current generated in diode recovery current (I_{RR}) or at switching. The non-detection time being synchronized with the CR cycle for setting chopping frequency is expressed as follows.

et4U.com

Non-detection time = $4 \times CR$ cycle

DataSheet4U.com

Time required to stop the output after overcurrent flows into the output stage is expressed as follows. Minimum time = $5 \times CR$ cycle Maximum time = $8 \times CR$ cycle

Note that the operating times as shown above are achieved when overcurrent flows as it is expected. Depends on the timing of output control mode, the circuit may not be triggered. Thus, to ensure safe operation, please insert a fuse in the V_M power supply. (The capacity of the fuse is determined according to a condition to be used. Please select one whose capacity does not exceed the power dissipation for the IC to avoid any operating problems.)

DataSheet4U.com

www.DataSheet4U.com

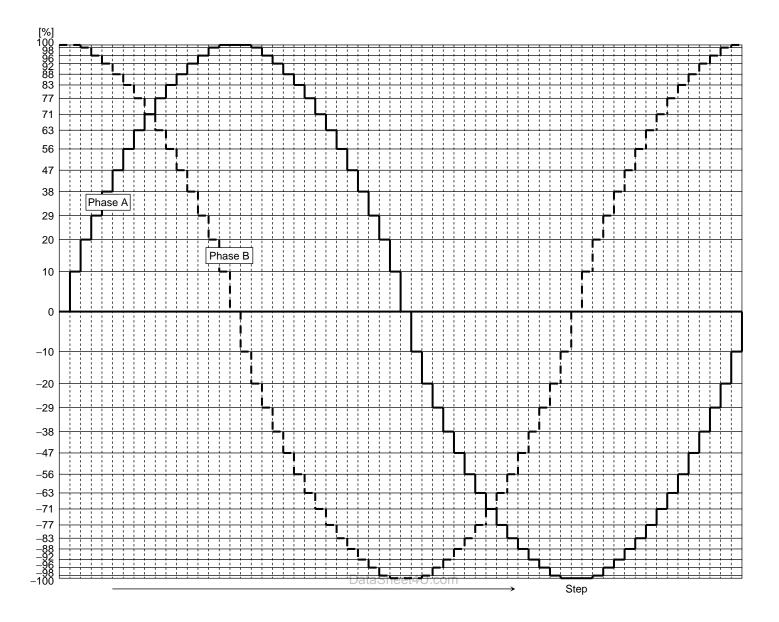
DataShe

Example of Application Operation Input Data (4-bit micro-step drive)

Image Image <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>																	
1 1						B ₀	B ₁	B ₂	В3			,	A ₀	A ₁	A ₂	A ₃	
1 1 <td>Bit</td> <td>15</td> <td>14</td> <td>13</td> <td>12</td> <td>11</td> <td>10</td> <td>9</td> <td>8</td> <td>7</td> <td>6</td> <td>5</td> <td>4</td> <td>3</td> <td>2</td> <td>1</td> <td>0</td>	Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3 1	1	1	1	1	0	1	1	1	1	1	1	0	0	0	0	0	1
4 1	2	1	1	1	0	1	1	1	1	1	1	0	1	0	0	0	1
5 1	3	1	1	1	0	0	1	1	1	1	1	0	0	1	0	0	1
61110110110110110110110110110110111	4	1	1	1	0	1	0	1	1	1	1	0	1	1	0	0	1
n 1 1 1 0 1 0 1 1 1 0 1 1 0 1 8 1 1 1 1 0 1 0 1 1 1 1 1 0 1 <td>5</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td>	5	1	1	1	0	0	0	1	1	1	1	0	0	0	1	0	1
8 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 9 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 <td>6</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td>	6	1	1	1	0	1	1	0	1	1	1	0	1	0	1	0	1
911100011110000111011101110110110111011	7	1	1	1	0	0	1	0	1	1	1	0	0	1	1	0	1
1011101110110101010101011011011011011011011011011011011011011011011011101101111101110111011110111111101111111011 <th< td=""><td>8</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td></th<>	8	1	1	1	0	1	0	0	1	1	1	0	1	1	1	0	1
11 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 <	9	1	1	1	0	0	0	0	1	1	1	0	0	0	0	1	1
12 1 1 1 0 1 0 1 1 0 1 1 0 1 1 13 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0	10	1	1	1	0	1	1	1	0	1	1	0	1	0	0	1	1
13111110011011011	11	1	1	1	0	0	1	1	0	1	1	0	0	1	0	1	1
14 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1	12	1	1	1	0	1	0	1	0	1	1	0	1	1	0	1	1
151110010011001111116111010100011011111171110000001101111111811100000001011111119111001000001011111120111001000001011111121111001000010111111221110010001001111112311100110011011111124111011100110111111251 <td< td=""><td>13</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td></td<>	13	1	1	1	0	0	0	1	0	1	1	0	0	0	1	1	1
161110100011011111117111100000110111111811100000001101111119111000000010111112011100100000100111112111100110000100111111221110010001001111123111000010010111112411100100101011112511100101010101111261110010 <td< td=""><td>14</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td><td>1</td><td>0</td><td>0</td><td>1</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>1</td><td>1</td></td<>	14	1	1	1	0	1	1	0	0	1	1	0	1	0	1	1	1
17 1 1 1 0 0 0 0 1	15	1	1	1	0	0	1	0	0	1	1	0	0	1	1	1	1
181110000000011111119111000000010111111201110010000001011111201110011001001002111100110000100111122111001000010011112311100100010111124111001000101111124111001100010111125111001100101011126111010010101011 <t< td=""><td>16</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>0</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td></t<>	16	1	1	1	0	1	0	0	0	1	1	0	1	1	1	1	1
191110100000101011111201110010010010011111201110010010010011112111100110010010011122111000100010011123111001100110011112411100110010011124111001100100111251110011111001011126111001100101011127111010101010 <t< td=""><td>17</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>0</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td></t<>	17	1	1	1	0	0	0	0	0	1	1	0	1	1	1	1	1
20 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 21 1 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0 0 1	18	1	1	1	0	0	0	0	0	0	1	0	1	1	1	1	1
211110110000110111221110001000101001112311100101001011112411100110011001124111001100110011251110011000100112611100010100101127111000101010112811100101010101129111001101101010101010101011010110101101101101 <td< td=""><td>19</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td></td><td>1</td><td>0</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td></td<>	19	1	1	1	0	1	0	0	0		1	0	1	1	1	1	1
221110001001010101111231110101010011111124111001101110111251110111110111126111000110111112711101001010111281110110101101129111011011011013011101101101101131111011101101010101321110111111010101010110110101 <td< td=""><td>20</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td><td>1</td></td<>	20	1	1	1	0	0	1	0	0	0	1	0	0	1	1	1	1
23 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 1 0 1	21	1	1	1	0	1	1	0	0	0	1	0	1	0	1	1	1
24 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1	22	1	1	1	0	0	0	1	0	0	1	0	0	0	1	1	1
25 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1	23	1	1	1	0	1	0	1	0	0	1	0	1	1	0	1	1
26 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1	24	1	1	1	0	0	1	1	0	0	1	0	0	1	0	1	1
27 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 28 1 1 1 0 0 1 0 1 00 1 1 00 00 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 <td< td=""><td>25</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td><td>1</td></td<>	25	1	1	1	0	1	1	1	0	0	1	0	1	0	0	1	1
28 1 1 1 0 0 1 0 1 00 1 1 00 1 1 00 1 1 00 1 1 00 1 1 1 00 1 1 1 00 1 1 1 1 00 1 1 1 1 1 1	26	1	1	1	0	0	0	0	1	0	1	0	0	0	0	1	1
29 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	27	1	1	1	0	1	0	0	1	0	1	0	1	1	1	0	1
30 1 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1	28	1	1	1	0	0	1	0	1	0	1	0	0	1	1	0	1
31 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1	29	1	1	1	0	1	1	0	1	0	1	0	1	0	1	0	1
32 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1	30	1	1	1	0	0	0	1	1	0	1	0	0	0	1	0	1
33 1 1 1 0 1 1 1 0 1 0 1 0 1 0 0 0 1	31	1	1	1	0	1	0	1	1	0	1	0	1	1	0	0	1
	32	1	1	1	0	0	1	1	1	0	1	0	0	1	0	0	1
34 1 1 0 1 1 1 0 1 0 0 0 0 0 0 1	33	1	1	1	0	1	1	1	1	0	1	0	1	0	0	0	1
	34	1	1	1	0	1	1	1	1	0	1	0	0	0	0	0	1

DataShe

	Torque 0	Torque 1	Decay B ₀	Decay B ₁	B ₀	B ₁	B ₂	B ₃	Phase B	Decay A ₀	Decay A ₁	A ₀	A ₁	A ₂	A ₃	Phase A
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
35	1	1	1	0	1	1	1	1	0	1	1	0	0	0	0	0
36	1	1	1	0	1	1	1	1	0	1	1	1	0	0	0	0
37	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	0
38	1	1	1	0	1	0	1	1	0	1	1	1	1	0	0	0
39	1	1	1	0	0	0	1	1	0	1	1	0	0	1	0	0
40	1	1	1	0	1	1	0	1	0	1	1	1	0	1	0	0
41	1	1	1	0	0	1	0	1	0	1	1	0	1	1	0	0
42	1	1	1	0	1	0	0	1	0	1	1	1	1	1	0	0
43	1	1	1	0	0	0	0	1	0	1	1	0	0	0	1	0
44	1	1	1	0	1	1	1	0	0	1	1	1	0	0	1	0
45	1	1	1	0	0	1	1	0	0	1	1	0	1	0	1	0
46	1	1	1	0	1	0	1	0	0	1	1	1	1	0	1	0
47	1	1	1	0	0	0	1	0	0	1	1	0	0	1	1	0
48	1	1	1	0	1	1	0	0	0	1	1	1	0	1	1	0
49	1	1	1	0	0	1	0	0	0	1	1	0	1	1	1	0
50	1	1	1	0	1	0	0	0	0	1	1	1	1	1	1	0
51	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1	0
52	1	1	1	0	0	0	0	0	1	1	0	1	1	1	1	0
53	1	1	1	0	1	0	0 OSh	0	1	1	0	1	1	1	1	0
54	1	1	1	0	0	1	0	0	1	1	0	0	1	1	1	0
55	1	1	1	0	1	1	0	0	1	1	0	1	0	1	1	0
56	1	1	1	0	0	0	1	0	1	1	0	0	0	1	1	0
57	1	1	1	0	1	0	1	0	1	1	0	1	1	0	1	0
58	1	1	1	0	0	1	1	0	1	1	0	0	1	0	1	0
59	1	1	1	0	1	1	1	0	1	1	0	1	0	0	1	0
60	1	1	1	0	0	0	0	1	1	1	0	0	0	0	1	0
61	1	1	1	0	1	0	0	1	1	1	0	1	1	1	0	0
62	1	1	1	0	0	1	0	1	1	1	0	0	1	1	0	0
63	1	1	1	0	1	1	0	1	1	1	0	1	0	1	0	0
64	1	1	1	0	0	0	1	1	1	1	0	0	0	1	0	0
65	1	1	1	0	1	0	1	1	1	1	0	1	1	0	0	0
66	1	1	1	0	0	1	1	1	1	1	0	0	1	0	0	0
67	1	1	1	0	1	1	1	1	1	1	0	1	0	0	0	0
68	1	1	1	0	1	1	1	1	1	1	0	0	0	0	0	0

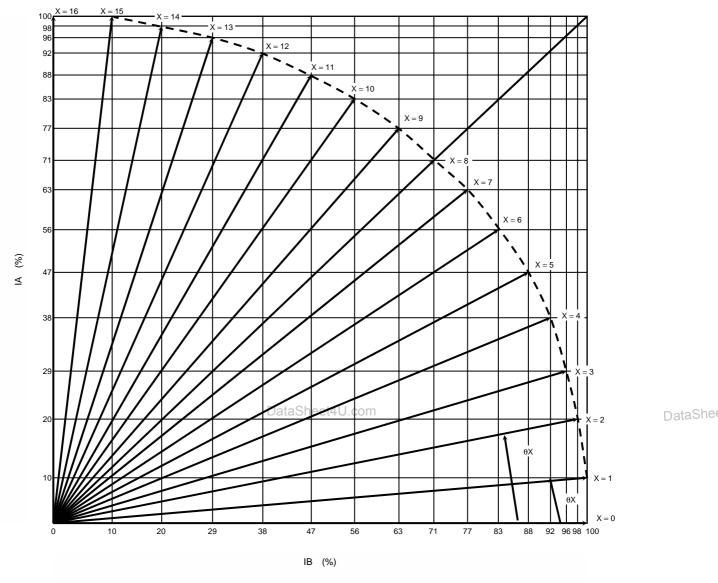

DataShe

Data are applied on the rising edge of CLK. Every input of a data string (16-bit) requires input of the Strobe signal. For the function of the input signals, please refer to the section "Function".

In the above input data example, Decay Mode has a Mixed Decay mode (37.5%) setting for both the rising and falling directions of the sine wave, and a torque setting of 100%.

et4U.com

17-step micro-step drive from 0° to 90° can be achieved by combining Current DATA (AB and CD) and phase data.

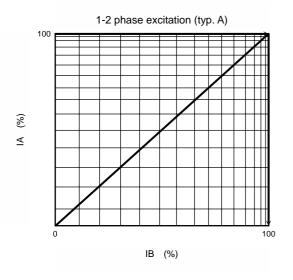

For the input current data, please refer to "Current A0 to A3 and B0 to B3" in the section "Function".

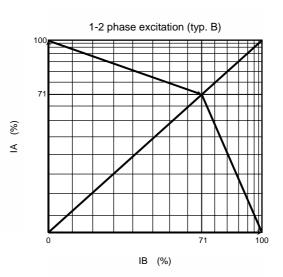
Depending on the load, the optimum condition changes for selecting Mixed Decay Mode when the sine wave rises and falls. Select the appropriate Mixed Decay timing according to the load.

et4U.com

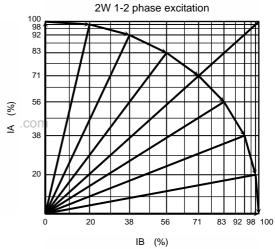
Output Current Vector Locus

4W 1-2 Phase Excitation (4-bit micro-step drive)

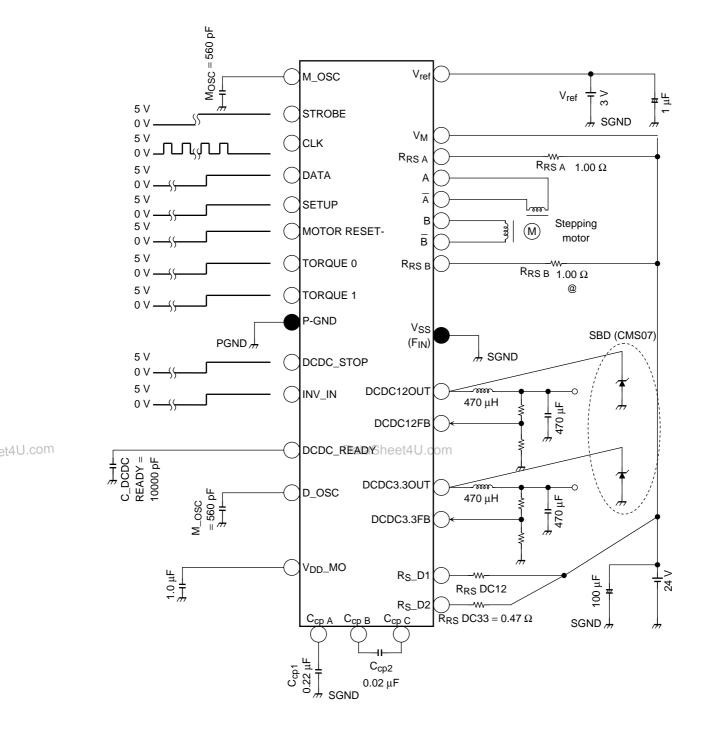

For the input data, please refer to the "Function" column in the "Current" row in the section "Function".


DataSheet4U.com

et4U.com


www.DataSheet4U.com

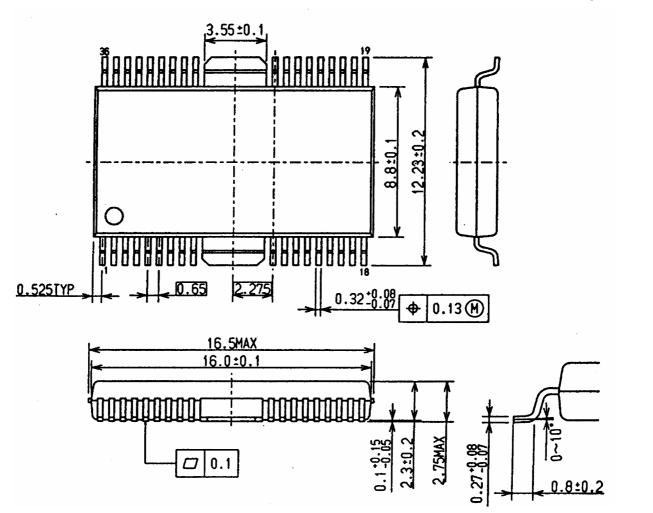
Output Vector Locus 2 (Modes other than 4 W 1-2 phase)



et4U.com W 1-2 phase excitation

DataShe

Application Circuit



DataShe

Package Dimensions

HSOP36-P-450-0.65

Unit: mm

et4U.com

Weight: 0.79 g (typ.)

DataSheet4U.com

www.DataSheet4U.com

DataShe

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
 - The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
 - TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
 safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
 such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.

36

DataSheet4U.com

et4U.com